Increasing reliability of axially compressed cylinders through stiffness tailoring and optimization

Reece L Lincoln*, Paul M Weaver, Alberto Pirrera, Rainer Groh

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

2 Citations (Scopus)
97 Downloads (Pure)


The capabilities of the rapid tow shearing (RTS) process are explored to reduce the well-known imperfection sensitivity of axially compressed cylindrical shells. RTS deposits curvilinear carbon fibre tapes with a fibre-angle-thickness coupling that enables the in situ manufacturing of embedded rings and stringers. By blending the material’s elastic modulus and wall thickness smoothly across the cylindrical surface, the load paths can be redistributed favourably with a minimal-design approach that contains part count and weight while ameliorating imperfection sensitivity. A genetic algorithm that incorporates realistic manufacturing imperfections and axial stiffness penalty is used to maximize the 99.9% reliability load of straight fibre (SF) and RTS cylinders. The axial stiffness penalty ensures that reliability does not come at the expense of stiffness. The first-order second-moment method is used to calculate statistical moments that enable an estimate of the 99.9% reliability load. Due to the fibre-angle-thickness coupling of RTS, buckling data are normalized by mass and thickness. Compared to a quasi-isotropic laminate, which corresponds to the optimal eight-layer design for a perfect cylinder, the optimized SF and RTS laminates have a 6% and 8% greater 99.9% normalized reliability load. By relaxing the axial stiffness penalty, the performance benefit can be increased such that SF and RTS cylinders exceed the 99.9% normalized reliability load of an eight-layer quasi-isotropic laminate by 23% and 37%, respectively. Both improvements (with and without penalty functions) stem largely from a reduction in the variance of the buckling-load distribution, thereby demonstrating the potential of fibre-steered cylinders in reducing the imperfection sensitivity of cylindrical shells.
Original languageEnglish
Article number20220034
Number of pages20
JournalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Issue number2244
Early online date13 Feb 2023
Publication statusPublished - 3 Apr 2023

Bibliographical note

Funding Information:
R.L.L. acknowledges the support of the EPSRC (grant no. EP/L016028/1). P.M.W. acknowledges the support of the Royal Society Wolfson Merit award and the Science Foundation Ireland for the award of a Research Professor grant (Varicomp: 15/RP/2773). R.M.J.G. acknowledges the support of the Royal Academy of Engineering under the Research Fellowship scheme (grant no. RF/201718/17178). Acknowledgements

Publisher Copyright:
© 2023 The Authors.


Dive into the research topics of 'Increasing reliability of axially compressed cylinders through stiffness tailoring and optimization'. Together they form a unique fingerprint.

Cite this