Inelastic seismic demand of real versus simulated ground-motion records for the Cascadia subduction earthquakes

GM Atkinson, K Goda

Research output: Contribution to journalArticle (Academic Journal)peer-review

21 Citations (Scopus)

Abstract

Nonlinear dynamic analysis of structures requires strong ground motion time histories (accelerograms) as input. The inherent scarcity of recorded ground motions for specific conditions (magnitude, distance, region, and site) makes utilization of alternatives unavoidable; such alternatives include simulated records and modified real records. There are many simulation methods available, but there is often a preference to using stochastic simulation methods, if justifiable, due to the ease with which many records can be simulated in a generic way. However, there are concerns that such simulated records may not produce similar nonlinear response in structures as real records (or modified real records) due to the lack of realistic phasing and other record characteristics, including peaks and troughs effects and response spectral shape effects. This study investigates peak nonlinear responses of inelastic single-degree-of-freedom systems with different hysteretic characteristics subjected to sets of stochastically simulated records, lightly modified real records, and scaled-real records; the former two of which were proposed by Atkinson and Macias (2009) as representative of expected ground motions for Cascadia subduction earthquakes of M 8.5 at Vancouver, Victoria, and Seattle. We conclude that (1) the peak nonlinear responses due to the modified records and the scaled-real records are similar if the peaks and troughs effects and response spectral shape effects are taken into account adequately in the choice of scaling factors for the real records; and (2) the peak nonlinear responses due to the simulated and modified records are similar. These findings, though obtained based on limited sets of ground-motion records, are in agreement with previous studies and highlight the need for judicious choices in cases involving the scaling of records. The results also suggest that stochastically simulated records may be an appropriate way to capture overall response potential for both linear and nonlinear structural systems, at least over a range of periods from 0.1 to 2 sec.
Translated title of the contributionInelastic seismic demand of real versus simulated ground-motion records for the Cascadia subduction earthquakes
Original languageEnglish
Pages (from-to)102 - 115
Number of pages14
JournalBulletin of the Seismological Society of America
Volume100(1)
DOIs
Publication statusPublished - Feb 2010

Fingerprint Dive into the research topics of 'Inelastic seismic demand of real versus simulated ground-motion records for the Cascadia subduction earthquakes'. Together they form a unique fingerprint.

Cite this