Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations

Martin Baurmann, Thilo Gross, Ulrike Feudel

Research output: Contribution to journalArticle (Academic Journal)peer-review

315 Citations (Scopus)

Abstract

We investigate the emergence of spatio-temporal patterns in ecological systems. In particular, we study a generalized predator–prey system on a spatial domain. On this domain diffusion is considered as the principal process of motion. We derive the conditions for Hopf and Turing instabilities without specifying the predator–prey functional responses and discuss their biological implications. Furthermore, we identify the codimension-2 Turing–Hopf bifurcation and the codimension-3 Turing–Takens–Bogdanov bifurcation. These bifurcations give rise to complex pattern formation processes in their neighborhood. Our theoretical findings are illustrated with a specific model. In simulations a large variety of different types of long-term behavior, including homogenous distributions, stationary spatial patterns and complex spatio-temporal patterns, are observed.
Original languageEnglish
Pages (from-to)220-229
JournalJournal of Theoretical Biology
Volume245
Issue number2
DOIs
Publication statusPublished - 2007

Research Groups and Themes

  • Engineering Mathematics Research Group

Fingerprint

Dive into the research topics of 'Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations'. Together they form a unique fingerprint.

Cite this