TY - JOUR
T1 - Integration of hydraulic lag-damper models with helicopter rotor simulations
AU - Titurus, Branislav
AU - Lieven, Nick
N1 - Publisher: AIAA
PY - 2010/1/1
Y1 - 2010/1/1
N2 - This paper describes the design and integration of a generic hydraulic lag-damper model into an industrial helicopter rotor simulation code. The paper explains the details of an implementation of a computational platform integrating the rotor simulation code with a damper model.Aparametric physical damper model is developed here in
order to allow physically consistent improvements to helicopter performance studies. Further, this model enables investigating novel uses of lag dampers, such as for vibration reduction. The physical consistency of this work is
demonstrated in two case studies. In the first instance, the damper laboratory experimental data are used for a correlation and validation study illustrating the capability of the modeling methodology to generate the model with
refined response predictions. The second case study considers a physics-based lag-damper model with an active flow restrictor based on a modified version of the validated passive damper model. This realistic model is shown to be able
to induce physically consistent changes in the nonrotating rotor-hub responses. A parametric study with harmonic three-per-revolution flow-restrictor activity suggests that significant load changes are possible in the nonrotating inplane
hub forces and moment. The study also shows possible tradeoffs such as high damper peak forces
corresponding to the reduced in-plane forces. Therefore, the presence of these tradeoffs will require the use of constrained optimization formulation to address more complex problem configurations.
AB - This paper describes the design and integration of a generic hydraulic lag-damper model into an industrial helicopter rotor simulation code. The paper explains the details of an implementation of a computational platform integrating the rotor simulation code with a damper model.Aparametric physical damper model is developed here in
order to allow physically consistent improvements to helicopter performance studies. Further, this model enables investigating novel uses of lag dampers, such as for vibration reduction. The physical consistency of this work is
demonstrated in two case studies. In the first instance, the damper laboratory experimental data are used for a correlation and validation study illustrating the capability of the modeling methodology to generate the model with
refined response predictions. The second case study considers a physics-based lag-damper model with an active flow restrictor based on a modified version of the validated passive damper model. This realistic model is shown to be able
to induce physically consistent changes in the nonrotating rotor-hub responses. A parametric study with harmonic three-per-revolution flow-restrictor activity suggests that significant load changes are possible in the nonrotating inplane
hub forces and moment. The study also shows possible tradeoffs such as high damper peak forces
corresponding to the reduced in-plane forces. Therefore, the presence of these tradeoffs will require the use of constrained optimization formulation to address more complex problem configurations.
UR - http://www.scopus.com/inward/record.url?scp=74249086531&partnerID=8YFLogxK
U2 - 10.2514/1.41961
DO - 10.2514/1.41961
M3 - Article (Academic Journal)
VL - 33
SP - 200
EP - 211
JO - Journal of Guidance, Control, and Dynamics
JF - Journal of Guidance, Control, and Dynamics
SN - 0731-5090
IS - 1
ER -