2 Citations (Scopus)
6 Downloads (Pure)

Abstract

We compare computational methods for determining the force between carbon atoms as a function of bond length, in order to establish which ones are capable of accurately simulating carbon-carbon bonds breaking due to applied mechanical strain in nanomaterials. Results from Tight-binding, density-functional theory and molecular mechanics potentials are compared to Møller-Plesset perturbation theory and complete-active-space self-consistent-field method through application to bond breaking in small molecules. Of the two molecular mechanics and three tight-binding parameter sets chosen only DFTB3 gives results which are broadly similar to those from the first-principles methods; the others fail to give physically meaningful variation of the forces with internuclear separation. This method and the molecular mechanics potentials are then applied to a periodic carbon nanoribbon under tensile strain. The molecular mechanics methods fail even qualitatively to reproduce the single catastrophic failure shortly after the peak stress indicated by DFTB3. This shows the importance of the electronic behaviour for the carbon-carbon interatomic forces relevant to the determination of the mechanical strength of materials at atomic-length scales.
Original languageEnglish
Pages (from-to)420-428
Number of pages9
JournalCarbon
Volume175
Early online date18 Jan 2021
DOIs
Publication statusPublished - 30 Apr 2021

Bibliographical note

Funding Information:
This work was supported by the Engineering and Physical Sciences Research Council through the EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science [grant number EP/L016028/1 ]. The calculations were carried out using the computational facilities of the Advanced Computing Research Centre, University of Bristol, www.bris.ac.uk/acrc .

Funding Information:
This work was supported by the Engineering and Physical Sciences Research Council through the EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science [grant number EP/L016028/1]. The calculations were carried out using the computational facilities of the Advanced Computing Research Centre, University of Bristol, www.bris.ac.uk/acrc.

Publisher Copyright:
© 2021 Elsevier Ltd

Keywords

  • Mechanical properties
  • carbon nanoribbons
  • Materials modelling

Fingerprint

Dive into the research topics of 'Interatomic forces breaking carbon-carbon bonds'. Together they form a unique fingerprint.
  • HPC (High Performance Computing) Facility

    Susan L Pywell (Manager), Simon A Burbidge (Other), Polly E Eccleston (Other) & Simon H Atack (Other)

    Facility/equipment: Facility

Cite this