Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments

Michael I Cotterell

Research output: Contribution to journalArticle (Academic Journal)peer-review

7 Citations (Scopus)

Abstract

Data are presented from intercomparisons between two research aircraft, the FAAM BAe-146 and the NASA Lockheed P3, and between the BAe-146 and the surface-based DOE (Department of Energy) ARM (Atmospheric Radiation Measurement) Mobile Facility at Ascension Island (8∘ S, 14.5∘ W; a remote island in the mid-Atlantic). These took place from 17 August to 5 September 2017, during the African biomass burning (BB) season. The primary motivation was to give confidence in the use of data from multiple platforms with which to evaluate numerical climate models. The three platforms were involved in the CLouds–Aerosol–Radiation Interaction and Forcing for Year 2017 (CLARIFY-2017), ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES), and Layered Atlantic Smoke and Interactions with Clouds (LASIC) field experiments. Comparisons from flight segments on 6 d where the BAe-146 flew alongside the ARM facility on Ascension Island are presented, along with comparisons from the wing-tip-to-wing-tip flight of the P3 and BAe-146 on 18 August 2017. The intercomparison flight sampled a relatively clean atmosphere overlying a moderately polluted boundary layer, while the six fly-bys of the ARM site sampled both clean and polluted conditions 2–4 km upwind. We compare and validate characterisations of aerosol physical, chemical and optical properties as well as atmospheric radiation and cloud microphysics between platforms. We assess the performance of measurement instrumentation in the field, under conditions where sampling conditions are not as tightly controlled as in laboratory measurements where calibrations are performed. Solar radiation measurements compared well enough to permit radiative closure studies. Optical absorption coefficient measurements from all three platforms were within uncertainty limits, although absolute magnitudes were too low (
Original languageEnglish
Pages (from-to)6329-6371
Number of pages43
JournalAtmospheric Measurement Techniques
Volume15
Issue number21
DOIs
Publication statusPublished - 3 Nov 2022

Bibliographical note

Funding Information:
Acknowledgements. Airborne data were obtained using the BAe- 146-301 Atmospheric Research Aircraft flown by Airtask Ltd and managed by FAAM Airborne Laboratory, jointly operated by UKRI and the University of Leeds along with the Lockheed P-3 Orion (N426NA) operated by NASA Goddard Space Flight Center's Wallops Flight Facility Aircraft Office. Data were obtained from the Atmospheric Radiation Measurement (ARM) user facility, a US Department of Energy (DOE) Office of Science user facility managed by the Biological and Environmental Research programme. We thank David Sproson (FAAM) for reprocessing the FAAM BAe- 146 datasets with the latest version of the decades-ppandas processing codes. We acknowledge the use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov/, last access: 21 February 2022), part of the NASA Earth Observing System Data and Information System (EOSDIS). Financial support. Hugh Coe, Ian Crawford, James Haywood, Anthony Jones, Jonathan W. Taylor, Huihui Wu, Keith Bower and Michael Cotterell were supported through the CLARIFY- 2017 Natural Environment Research Council large grant proposal (grant nos. NE/L013797/1, NE/L013584/1, and NE/P013406/1). Nicholas Davies was supported by a NERC/Met Office Industrial Case studentship (grant no. 640052003). James Haywood, Anothony Jones and Michael Cotterell were also supported by the Research Council of Norway via the projects AC/BC (grant no. 240372) and NetBC (grant no. 244141). Paquita Zuidema and Jianhao Zhang were supported by the US Department of Energy, Office of Science (grant nos. DE-SC0018272 and DE-SC0021250), with Paquita Zuidema receiving further support from NASA EVS-2 ORACLES grant NNX15AF98G. Amie Dobracki was supported by grants DESC0018272 and NNX15AF98G. Sabrina Cochrane, Sebastian Schmidt and Hong Chen were supported by NASA (grant no. NNX15AF62G). Robert Wood was supported by NASA (grant no. NNX15AF96G-S13). Siddhant Gupta and Greg M. McFarquhar were supported by NASA (grant nos. 80NSSC18K0222, NNX15AF93G and NNX16A018H). Maria A. Zawadowicz was supported by the US Department of Energy Atmospheric Systems Research (ASR) programme under contract DE-SC0012704 to Brookhaven National Laboratory.

Funding Information:
Hugh Coe, Ian Crawford, James Haywood, Anthony Jones, Jonathan W. Taylor, Huihui Wu, Keith Bower and Michael Cotterell were supported through the CLARIFY-2017 Natural Environment Research Council large grant proposal (grant nos. NE/L013797/1, NE/L013584/1, and NE/P013406/1). Nicholas Davies was supported by a NERC/Met Office Industrial Case studentship (grant no. 640052003). James Haywood, Anothony Jones and Michael Cotterell were also supported by the Research Council of Norway via the projects AC/BC (grant no. 240372) and NetBC (grant no. 244141). Paquita Zuidema and Jianhao Zhang were supported by the US Department of Energy, Office of Science (grant nos. DE-SC0018272 and DE-SC0021250), with Paquita Zuidema receiving further support from NASA EVS-2 ORACLES grant NNX15AF98G. Amie Dobracki was supported by grants DESC0018272 and NNX15AF98G. Sabrina Cochrane, Sebastian Schmidt and Hong Chen were supported by NASA (grant no. NNX15AF62G). Robert Wood was supported by NASA (grant no. NNX15AF96G-S13). Siddhant Gupta and Greg M. McFarquhar were supported by NASA (grant nos. 80NSSC18K0222, NNX15AF93G and NNX16A018H). Maria A. Zawadowicz was supported by the US Department of Energy Atmospheric Systems Research (ASR) programme under contract DE-SC0012704 to Brookhaven National Laboratory.

Publisher Copyright:
Copyright © 2022 Paul A. Barrett et al.

Fingerprint

Dive into the research topics of 'Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC field experiments'. Together they form a unique fingerprint.

Cite this