TY - JOUR
T1 - Interfacial Assembly of Protein-polymer Nano-conjugates into Stimulus-Responsive Biomimetic Protocells
AU - Huang, Xin
AU - Li, Mei
AU - Green, David C
AU - Williams, David S
AU - Patil, Avinash J
AU - Mann, Stephen
PY - 2013/7/30
Y1 - 2013/7/30
N2 - The mechanism of spontaneous assembly of microscale compartments is a central question for the origin of life, and has technological repercussions in diverse areas such as materials science, catalysis, biotechnology and biomedicine. Such compartments need to be semi-permeable, structurally robust and capable of housing assemblages of functional components for internalized chemical transformations. In principle, proteins should be ideal building blocks for the construction of membrane-bound compartments but protein vesicles with cell-like properties are extremely rare. Here we present an approach to the interfacial assembly of protein-based micro-compartments (proteinosomes) that are delineated by a semi-permeable, stimulus-responsive, enzymatically active, elastic membrane consisting of a closely packed monolayer of conjugated protein–polymer building blocks. The proteinosomes can be dispersed in oil or water, thermally cycled to temperatures of 70 °C, and partially dried and re-inflated without loss of structural integrity. As a consequence, they exhibit protocellular properties such as guest molecule encapsulation, selective permeability, gene-directed protein synthesis and membrane-gated internalized enzyme catalysis.
AB - The mechanism of spontaneous assembly of microscale compartments is a central question for the origin of life, and has technological repercussions in diverse areas such as materials science, catalysis, biotechnology and biomedicine. Such compartments need to be semi-permeable, structurally robust and capable of housing assemblages of functional components for internalized chemical transformations. In principle, proteins should be ideal building blocks for the construction of membrane-bound compartments but protein vesicles with cell-like properties are extremely rare. Here we present an approach to the interfacial assembly of protein-based micro-compartments (proteinosomes) that are delineated by a semi-permeable, stimulus-responsive, enzymatically active, elastic membrane consisting of a closely packed monolayer of conjugated protein–polymer building blocks. The proteinosomes can be dispersed in oil or water, thermally cycled to temperatures of 70 °C, and partially dried and re-inflated without loss of structural integrity. As a consequence, they exhibit protocellular properties such as guest molecule encapsulation, selective permeability, gene-directed protein synthesis and membrane-gated internalized enzyme catalysis.
U2 - 10.1038/ncomms3239
DO - 10.1038/ncomms3239
M3 - Article (Academic Journal)
C2 - 23896993
AN - SCOPUS:84881335903
SN - 2041-1723
VL - 4
JO - Nature Communications
JF - Nature Communications
M1 - 2239
ER -