Intermolecular Hydrogen Bonding Controlled Intersystem Crossing Rates of Benzophenone

Ravi Kumar Venkatraman, Surajit Kayal, Arvind Barak, Andrew J. Orr-Ewing*, Siva Umapathy

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

27 Citations (Scopus)
464 Downloads (Pure)


Solvation plays a critical role in various physicochemical and biological processes. Here, the rate of intersystem crossing (ISC) of benzophenone from its S1(nπ∗) state to its triplet manifold of states is shown to be modified by hydrogen-bonding interactions with protic solvent molecules. We selectively photoexcite benzophenone with its carbonyl group either solvent coordinated or uncoordinated by tuning the excitation wavelength to the band center (λ = 340 nm) or the long-wavelength edge (λ = 380 nm) of its π∗ ↔ n absorption band. A combination of ultrafast absorption and Raman spectroscopy shows that the hydrogen-bonding interaction increases the time constant for ISC from <200 fs to 1.7 ± 0.2 ps for benzophenone in CH3OH. The spectroscopic evidence suggests that the preferred pathway for ISC is from the S1(nπ∗) to the T2(ππ∗) state, with the rate of internal conversion from T2(ππ∗) to T1(nπ∗) controlled by solvent quenching of excess vibrational energy.

Original languageEnglish
Pages (from-to)1642-1648
Number of pages7
JournalJournal of Physical Chemistry Letters
Issue number7
Early online date14 Mar 2018
Publication statusPublished - 5 Apr 2018


Dive into the research topics of 'Intermolecular Hydrogen Bonding Controlled Intersystem Crossing Rates of Benzophenone'. Together they form a unique fingerprint.

Cite this