TY - JOUR
T1 - Intervention planning for a digital intervention for self-management of hypertension
T2 - a theory-, evidence- and person-based approach
AU - Band, Rebecca
AU - Bradbury, Katherine
AU - Morton, Katherine
AU - May, Carl
AU - Michie, Susan
AU - Mair, Frances S
AU - Murray, Elizabeth
AU - McManus, Richard J
AU - Little, Paul
AU - Yardley, Lucy
PY - 2017/2/23
Y1 - 2017/2/23
N2 - BACKGROUND: This paper describes the intervention planning process for the Home and Online Management and Evaluation of Blood Pressure (HOME BP), a digital intervention to promote hypertension self-management. It illustrates how a Person-Based Approach can be integrated with theory- and evidence-based approaches. The Person-Based Approach to intervention development emphasises the use of qualitative research to ensure that the intervention is acceptable, persuasive, engaging and easy to implement.METHODS: Our intervention planning process comprised two parallel, integrated work streams, which combined theory-, evidence- and person-based elements. The first work stream involved collating evidence from a mixed methods feasibility study, a systematic review and a synthesis of qualitative research. This evidence was analysed to identify likely barriers and facilitators to uptake and implementation as well as design features that should be incorporated in the HOME BP intervention. The second work stream used three complementary approaches to theoretical modelling: developing brief guiding principles for intervention design, causal modelling to map behaviour change techniques in the intervention onto the Behaviour Change Wheel and Normalisation Process Theory frameworks, and developing a logic model.RESULTS: The different elements of our integrated approach to intervention planning yielded important, complementary insights into how to design the intervention to maximise acceptability and ease of implementation by both patients and health professionals. From the primary and secondary evidence, we identified key barriers to overcome (such as patient and health professional concerns about side effects of escalating medication) and effective intervention ingredients (such as providing in-person support for making healthy behaviour changes). Our guiding principles highlighted unique design features that could address these issues (such as online reassurance and procedures for managing concerns). Causal modelling ensured that all relevant behavioural determinants had been addressed, and provided a complete description of the intervention. Our logic model linked the hypothesised mechanisms of action of our intervention to existing psychological theory.CONCLUSION: Our integrated approach to intervention development, combining theory-, evidence- and person-based approaches, increased the clarity, comprehensiveness and confidence of our theoretical modelling and enabled us to ground our intervention in an in-depth understanding of the barriers and facilitators most relevant to this specific intervention and user population.
AB - BACKGROUND: This paper describes the intervention planning process for the Home and Online Management and Evaluation of Blood Pressure (HOME BP), a digital intervention to promote hypertension self-management. It illustrates how a Person-Based Approach can be integrated with theory- and evidence-based approaches. The Person-Based Approach to intervention development emphasises the use of qualitative research to ensure that the intervention is acceptable, persuasive, engaging and easy to implement.METHODS: Our intervention planning process comprised two parallel, integrated work streams, which combined theory-, evidence- and person-based elements. The first work stream involved collating evidence from a mixed methods feasibility study, a systematic review and a synthesis of qualitative research. This evidence was analysed to identify likely barriers and facilitators to uptake and implementation as well as design features that should be incorporated in the HOME BP intervention. The second work stream used three complementary approaches to theoretical modelling: developing brief guiding principles for intervention design, causal modelling to map behaviour change techniques in the intervention onto the Behaviour Change Wheel and Normalisation Process Theory frameworks, and developing a logic model.RESULTS: The different elements of our integrated approach to intervention planning yielded important, complementary insights into how to design the intervention to maximise acceptability and ease of implementation by both patients and health professionals. From the primary and secondary evidence, we identified key barriers to overcome (such as patient and health professional concerns about side effects of escalating medication) and effective intervention ingredients (such as providing in-person support for making healthy behaviour changes). Our guiding principles highlighted unique design features that could address these issues (such as online reassurance and procedures for managing concerns). Causal modelling ensured that all relevant behavioural determinants had been addressed, and provided a complete description of the intervention. Our logic model linked the hypothesised mechanisms of action of our intervention to existing psychological theory.CONCLUSION: Our integrated approach to intervention development, combining theory-, evidence- and person-based approaches, increased the clarity, comprehensiveness and confidence of our theoretical modelling and enabled us to ground our intervention in an in-depth understanding of the barriers and facilitators most relevant to this specific intervention and user population.
KW - Blood Pressure Monitoring, Ambulatory/methods
KW - Evidence-Based Medicine
KW - Feasibility Studies
KW - Health Behavior
KW - Home Care Services
KW - Humans
KW - Hypertension/therapy
KW - Self-Management/methods
KW - Social Support
KW - Telemedicine
U2 - 10.1186/s13012-017-0553-4
DO - 10.1186/s13012-017-0553-4
M3 - Review article (Academic Journal)
C2 - 28231840
SN - 1748-5908
VL - 12
JO - Implementation Science
JF - Implementation Science
IS - 25
ER -