Skip to content

Intrinsically organized resting state networks in the human spinal cord

Research output: Contribution to journalArticle

  • Yazhuo Kong
  • Falk Eippert
  • Christian F Beckmann
  • Jesper Andersson
  • Jürgen Finsterbusch
  • Christian Büchel
  • Irene Tracey
  • Jonathan C W Brooks
Original languageEnglish
Pages (from-to)18067-18072
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number50
Early online date3 Dec 2014
DateAccepted/In press - 11 Nov 2014
DateE-pub ahead of print - 3 Dec 2014
DatePublished (current) - 16 Dec 2014


Spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals of the brain have repeatedly been observed when no task or external stimulation is present. These fluctuations likely reflect baseline neuronal activity of the brain and correspond to functionally relevant resting-state networks (RSN). It is not known however, whether intrinsically organized and spatially circumscribed RSNs also exist in the spinal cord, the brain's principal sensorimotor interface with the body. Here, we use recent advances in spinal fMRI methodology and independent component analysis to answer this question in healthy human volunteers. We identified spatially distinct RSNs in the human spinal cord that were clearly separated into dorsal and ventral components, mirroring the functional neuroanatomy of the spinal cord and likely reflecting sensory and motor processing. Interestingly, dorsal (sensory) RSNs were separated into right and left components, presumably related to ongoing hemibody processing of somatosensory information, whereas ventral (motor) RSNs were bilateral, possibly related to commissural interneuronal networks involved in central pattern generation. Importantly, all of these RSNs showed a restricted spatial extent along the spinal cord and likely conform to the spinal cord's functionally relevant segmental organization. Although the spatial and temporal properties of the dorsal and ventral RSNs were found to be significantly different, these networks showed significant interactions with each other at the segmental level. Together, our data demonstrate that intrinsically highly organized resting-state fluctuations exist in the human spinal cord and are thus a hallmark of the entire central nervous system.

    Structured keywords

  • Brain and Behaviour

    Research areas

  • Adult, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Nerve Net, Regression Analysis, Rest, Spinal Cord



View research connections

Related faculties, schools or groups