Investigation of subglacial weathering under the Greenland Ice Sheet using silicon isotopes

J. E. Hatton*, K. R. Hendry, J. R. Hawkings, J. L. Wadham, T. J. Kohler, Marek Stibal, A. D. Beaton, E. A. Bagshaw, J. Telling

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

29 Citations (Scopus)
132 Downloads (Pure)


Subglacial chemical weathering plays a role in global silicate weathering budgets, contributing to the cycling of silicon (Si) in terrestrial and marine systems and the potential drawdown of carbon dioxide from the atmosphere. Here, we use data from two Greenland Ice Sheet (GrIS) catchments to demonstrate how Si isotopes from dissolved and amorphous particulate fractions (δ30DSi and δ30ASi respectively) can be used together with major ion data to assess the degree of secondary silicate weathering product formation and redissolution in subglacial environments. We compare a time-series of summer melt seasons from the two study sites, which differ in catchment size (~600 km2 for Leverett Glacier (LG) and ~36 km2 for Kiattuut Sermiat (KS)). Subglacial waters from LG have elevated Na+ and K+ ions in relation to Ca2+ and Mg2+ ions, indicating a predominance of silicate weathering, whilst meltwaters from KS are characterised by carbonate hydrolysis weathering (hydrolysis and carbonation) throughout the melt season. Both catchments have mean δ30DSi values substantially lower than average riverine values (KS 0.41‰, LG -0.25‰, versus a global riverine mean of 1.25‰) and display a seasonal decline, which is more pronounced at LG. The δ30ASi values (discharge weighted mean values KS -0.44‰, LG -0.22‰) are lighter than the bedrock (mean values KS -0.18±0.12‰, LG 0.00±0.07‰) in both catchments, indicating a secondary weathering product origin or leaching of lighter isotopes during initial weathering of crushed rock. When used in combination, the major ion and silicon isotope data reveal that the extent of silicate weathering and secondary phase redissolution in the two catchments is different, with both being more pronounced at LG. Contrasting weathering regimes and subglacial hydrology between catchments need to be considered when estimating the δ30Si composition of silica exported into polar oceans from the GrIS, with larger catchments likely to produce fluxes of lighter δ30Si. As larger catchments dominate freshwater export to the ocean, GrIS meltwater is likely to be very light in isotopic composition, the and the flux of which is likely to increase with ice melt as the climate warms.
Original languageEnglish
Pages (from-to)191-206
Number of pages16
JournalGeochimica et Cosmochimica Acta
Early online date3 Jan 2019
Publication statusPublished - 15 Feb 2019


  • Silicon isotopes
  • Subglacial
  • Silicate
  • Weathering
  • Greenland


Dive into the research topics of 'Investigation of subglacial weathering under the Greenland Ice Sheet using silicon isotopes'. Together they form a unique fingerprint.
  • The silicon cycle impacted by past ice sheets

    Hawkings, J. R., Hatton, J. E., Hendry, K. R., de Souza, G. F., Wadham, J. L., Ivanovic, R. F., Kohler, T. J., Stibal, M., Beaton, A., Lamarche-Gagnon, G., Tedstone, A., Hain, M. P., Bagshaw, E., Pike, J. & Tranter, M., 10 Aug 2018, In: Nature Communications. 9, 10 p., 3210.

    Research output: Contribution to journalArticle (Academic Journal)peer-review

    Open Access
    29 Citations (Scopus)
    282 Downloads (Pure)

Cite this