Skip to content

Investigation of subglacial weathering under the Greenland Ice Sheet using silicon isotopes

Research output: Contribution to journalArticle (Academic Journal)

Original languageEnglish
Pages (from-to)191-206
Number of pages16
JournalGeochimica et Cosmochimica Acta
Early online date3 Jan 2019
DateAccepted/In press - 11 Dec 2018
DateE-pub ahead of print - 3 Jan 2019
DatePublished (current) - 15 Feb 2019


Subglacial chemical weathering plays a role in global silicate weathering budgets, contributing to the cycling of silicon (Si) in terrestrial and marine systems and the potential drawdown of carbon dioxide from the atmosphere. Here, we use data from two Greenland Ice Sheet (GrIS) catchments to demonstrate how Si isotopes from dissolved and amorphous particulate fractions (δ30DSi and δ30ASi respectively) can be used together with major ion data to assess the degree of secondary silicate weathering product formation and redissolution in subglacial environments. We compare a time-series of summer melt seasons from the two study sites, which differ in catchment size (~600 km2 for Leverett Glacier (LG) and ~36 km2 for Kiattuut Sermiat (KS)). Subglacial waters from LG have elevated Na+ and K+ ions in relation to Ca2+ and Mg2+ ions, indicating a predominance of silicate weathering, whilst meltwaters from KS are characterised by carbonate hydrolysis weathering (hydrolysis and carbonation) throughout the melt season. Both catchments have mean δ30DSi values substantially lower than average riverine values (KS 0.41‰, LG -0.25‰, versus a global riverine mean of 1.25‰) and display a seasonal decline, which is more pronounced at LG. The δ30ASi values (discharge weighted mean values KS -0.44‰, LG -0.22‰) are lighter than the bedrock (mean values KS -0.18±0.12‰, LG 0.00±0.07‰) in both catchments, indicating a secondary weathering product origin or leaching of lighter isotopes during initial weathering of crushed rock. When used in combination, the major ion and silicon isotope data reveal that the extent of silicate weathering and secondary phase redissolution in the two catchments is different, with both being more pronounced at LG. Contrasting weathering regimes and subglacial hydrology between catchments need to be considered when estimating the δ30Si composition of silica exported into polar oceans from the GrIS, with larger catchments likely to produce fluxes of lighter δ30Si. As larger catchments dominate freshwater export to the ocean, GrIS meltwater is likely to be very light in isotopic composition, the and the flux of which is likely to increase with ice melt as the climate warms.

    Research areas

  • Silicon isotopes, Subglacial, Silicate, Weathering, Greenland

Download statistics

No data available



  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at . Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 4.24 MB, PDF document

    Licence: CC BY-NC-ND


View research connections

Related faculties, schools or groups