Investigation of the Effect of Milling Duration on a Ce-Gd Doped Zirconolite Phase Assemblage Synthesised by Hot Isostatic Pressing

Merve Kuman, Laura J. Gardner, Lewis R. Blackburn, Martin C. Stennett, Neil C. Hyatt, Claire L. Corkhill*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

Abstract

Zirconolite is a candidate ceramic wasteform under consideration for the immobilisation of the UK civil PuO2 inventory. In the present work, a baseline dual-substituted zirconolite with the target composition (Ca0.783Gd0.017Ce0.2)(Zr0.883Gd0.017Ce0.1)(Ti1.6Al0.4)O7 was fabricated by hot isostatic pressing (HIPing). In order to optimise the microstructure properties and improve the obtained yield of the zirconolite phase, a range of planetary ball milling parameters were investigated prior to consolidation by HIP. This included milling the batched oxide precursors at 400 rpm for up to 120 min, the pre-milling of CeO2 (PuO2 surrogate) to reduce the particle size and using a CeO2 source with finer particle size (<5 µm). The HIPed zirconolite product consisted of both zirconolite-2M and zirconolite-3T polytypes in varying proportions; however, an additional perovskite phase was obtained in varying quantities as a secondary phase. Ce L3-edge X-ray absorption spectroscopy was utilised to determine the Ce oxidation state. In this study, the ideal milling parameter for the fabrication of zirconolite waste forms was defined as 60 min at 400 rpm.

Original languageEnglish
Pages (from-to)707-716
Number of pages10
JournalCeramics
Volume6
Issue number1
DOIs
Publication statusPublished - Mar 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • HIP
  • plutonium
  • SEM
  • XANES
  • XRD
  • zirconolite

Fingerprint

Dive into the research topics of 'Investigation of the Effect of Milling Duration on a Ce-Gd Doped Zirconolite Phase Assemblage Synthesised by Hot Isostatic Pressing'. Together they form a unique fingerprint.

Cite this