TY - JOUR
T1 - Investigations of the co-doping of boron and lithium into CVD diamond thin films
AU - Halliwell, Sarah
AU - May, Paul
AU - Fox, Neil
AU - Othman, Zamir
PY - 2017/6
Y1 - 2017/6
N2 - Lithium has been incorporated into heavily boron-doped single-crystal (SCD), microcrystalline (MCD) and nanocrystalline diamond (NCD) films at concentrations up to ~2 × 1020 cm-3 using Li3N as a solid-state Li source for in-diffusion and diborane as the B source. The quality, morphology, electrical resistance and concentration of B and Li dopants present in a range of B+Li co-doped SCD, MCD and NCD films have been studied. Analysis of the SIMS depth profiles for Li enabled the diffusion constants, D, to be measured (in units of cm2 s-1) as: 2.5 × 10-15, 1.3 × 10-14 and 7.0 × 10-14 for SCD, MCD and NCD, respectively, at 1100 K. The value for D for SCD agrees closely with that in the literature, while the much larger values for the polycrystalline films provide direct evidence that Li can diffuse rapidly along or through diamond grain boundaries at elevated temperatures. If prolonged diffusion allows the Li to reach the Si substrate, the Si acts as a sink for Li absorbing large quantities and reducing its concentration in the diamond film.
AB - Lithium has been incorporated into heavily boron-doped single-crystal (SCD), microcrystalline (MCD) and nanocrystalline diamond (NCD) films at concentrations up to ~2 × 1020 cm-3 using Li3N as a solid-state Li source for in-diffusion and diborane as the B source. The quality, morphology, electrical resistance and concentration of B and Li dopants present in a range of B+Li co-doped SCD, MCD and NCD films have been studied. Analysis of the SIMS depth profiles for Li enabled the diffusion constants, D, to be measured (in units of cm2 s-1) as: 2.5 × 10-15, 1.3 × 10-14 and 7.0 × 10-14 for SCD, MCD and NCD, respectively, at 1100 K. The value for D for SCD agrees closely with that in the literature, while the much larger values for the polycrystalline films provide direct evidence that Li can diffuse rapidly along or through diamond grain boundaries at elevated temperatures. If prolonged diffusion allows the Li to reach the Si substrate, the Si acts as a sink for Li absorbing large quantities and reducing its concentration in the diamond film.
U2 - 10.1016/j.diamond.2017.05.001
DO - 10.1016/j.diamond.2017.05.001
M3 - Article (Academic Journal)
SN - 0925-9635
VL - 76
SP - 115
EP - 122
JO - Diamond and Related Materials
JF - Diamond and Related Materials
ER -