Learning the Preferences of News Readers with SVM and Lasso Ranking

Elena Hensinger, Ilias Flaounas, Nello Cristianini

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

6 Citations (Scopus)


We attack the task of predicting which news-stories are more appealing to a given audience by comparing ‘most popular stories’, gathered from various online news outlets, over a period of seven months, with stories that did not become popular despite appearing on the same page at the same time. We cast this as a learning-to-rank task, and train two different learning algorithms to reproduce the preferences of the readers, within each of the outlets. The first method is based on Support Vector Machines, the second on the Lasso. By just using words as features, SVM ranking can reach significant accuracy in correctly predicting the preference of readers for a given pair of articles. Furthermore, by exploiting the sparsity of the solutions found by the Lasso, we can also generate lists of keywords that are expected to trigger the attention of the outlets’ readers.
Translated title of the contributionLearning the Preferences of News Readers with SVM and Lasso Ranking
Original languageEnglish
Title of host publicationArtificial Intelligence Applications and Innovations
PublisherSpringer International Publishing AG
Publication statusPublished - 2010

Bibliographical note

Other page information: 179-186
Conference Proceedings/Title of Journal: Artificial Intelligence Applications and Innovations
Other identifier: 2001262


Dive into the research topics of 'Learning the Preferences of News Readers with SVM and Lasso Ranking'. Together they form a unique fingerprint.

Cite this