Abstract
The need for labour intensive pixel-wise annotation is a major limitation of many fully supervised learning methods for segmenting bioimages that can contain numerous object instances with thin separations. In this paper, we introduce a deep convolutional neural network for microscopy image segmentation. Annotation issues are circumvented by letting the network being trainable on coarse labels combined with only a very small number of images with pixel-wise annotations. We call this new labelling strategy ‘lazy’ labels. Image segmentation is stratified into three connected tasks: rough inner region detection, object separation and pixel-wise segmentation. These tasks are learned in an end-to-end multi-task learning framework. The method is demonstrated on two microscopy datasets, where we show that the model gives accurate segmentation results even if exact boundary labels are missing for a majority of annotated data. It brings more flexibility and efficiency for training deep neural networks that are data hungry and is applicable to biomedical images with poor contrast at the object boundaries or with diverse textures and repeated patterns.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2020 Workshops, Proceedings |
Editors | Adrien Bartoli, Andrea Fusiello |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 411-428 |
Number of pages | 18 |
ISBN (Print) | 9783030664145 |
DOIs | |
Publication status | Published - 2020 |
Event | Workshops held at the 16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom Duration: 23 Aug 2020 → 28 Aug 2020 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12535 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | Workshops held at the 16th European Conference on Computer Vision, ECCV 2020 |
---|---|
Country/Territory | United Kingdom |
City | Glasgow |
Period | 23/08/20 → 28/08/20 |
Bibliographical note
Funding Information:RK and CBS acknowledge support from the EPSRC grant EP/T003553/1. CBS additionally acknowledges support from the Leverhulme Trust project on ?Breaking the non-convexity barrier?, the Philip Leverhulme Prize, the EPSRC grant EP/S026045/1, the EPSRC Centre Nr. EP/N014588/1, the RISE projects CHiPS and NoMADS, the Cantab Capital Institute for the Mathematics of Information and the Alan Turing Institute, Royal Society Wolfson fellowship. AB and NP acknowledge support from the EU Horizon 2020 research and innovation programme NoMADS (Marie Sk?lodowska-Curie grant agreement No. 777826).
Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
Keywords
- Convolutional neural networks
- Image segmentation
- Microscopy images
- Multi-task learning