Skip to content

Local modulation of the Wnt/β‐catenin and bone morphogenic protein (BMP) pathways recapitulates rib defects analogous to cerebro‐costo‐mandibular syndrome

Research output: Contribution to journalArticle

Original languageEnglish
JournalJournal of Anatomy
Early online date29 Dec 2019
DateAccepted/In press - 28 Nov 2019
DateE-pub ahead of print (current) - 29 Dec 2019


Ribs are seldom affected by developmental disorders, however, multiple defects in rib structure are observed in the spliceosomal disease cerebro‐costo‐mandibular syndrome (CCMS). These defects include rib gaps, found in the posterior part of the costal shaft in multiple ribs, as well as missing ribs, shortened ribs and abnormal costotransverse articulations, which result in inadequate ventilation at birth and high perinatal mortality. The genetic mechanism of CCMS is a loss‐of‐function mutation in SNRPB, a component of the major spliceosome, and knockdown of this gene in vitro affects the activity of the Wnt/β‐catenin and bone morphogenic protein (BMP) pathways. The aim of the present study was to investigate whether altering these pathways in vivo can recapitulate rib gaps and other rib abnormalities in the model animal. Chick embryos were implanted with beads soaked in Wnt/β‐catenin and BMP pathway modulators during somitogenesis, and incubated until the ribs were formed. Some embryos were harvested in the preceding days for analysis of the chondrogenic marker Sox9, to determine whether pathway modulation affected somite patterning or chondrogenesis. Wnt/β‐catenin inhibition manifested characteristic rib phenotypes seen in CCMS, including rib gaps (P < 0.05) and missing ribs (P < 0.05). BMP pathway activation did not cause rib gaps but yielded missing rib (P < 0.01) and shortened rib phenotypes (P < 0.05). A strong association with vertebral phenotypes was also noted with BMP4 (P < 0.001), including scoliosis (P < 0.05), a feature associated with CCMS. Reduced expression of Sox9 was detected with Wnt/β‐catenin inhibition, indicating that inhibition of chondrogenesis precipitated the rib defects in the presence of Wnt/β‐catenin inhibitors. BMP pathway activators also reduced Sox9 expression, indicating an interruption of somite patterning in the manifestation of rib defects with BMP4. The present study demonstrates that local inhibition of the Wnt/β‐catenin and activation of the BMP pathway can recapitulate rib defects, such as those observed in CCMS. The balance of Wnt/β‐catenin and BMP in the somite is vital for correct rib morphogenesis, and alteration of the activity of these two pathways in CCMS may perturb this balance during somite patterning, leading to the observed rib defects.

    Research areas

  • Cerebro-costo-mandibular syndrome (CCMS), Wnt, BMP, rib gap, rib defects, somite patterning, chondrogenesis, epaxial, hypaxial



  • Full-text PDF (author’s accepted manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley at . Please refer to any applicable terms of use of the publisher.

    4.38 MB, PDF document

    Embargo ends: 29/12/20

    Request copy


View research connections

Related faculties, schools or groups