Long-term imaging and spatio-temporal control of living cells using targeted light based on closed-loop feedback

Research output: Contribution to journalArticle (Academic Journal)peer-review

Abstract

The ability to optically interact with cells on both an individual and collective level has applications from wound healing to cancer treatment. Building systems that can facilitate both localised light illumination and visualisation of cells can, however, be challenging and costly. This work takes the Dynamic Optical MicroEnvironment (DOME), an existing platform for the closed-loop optical control of microscale agents, and adapts the design to support live-cell imaging. Through modifications made to the imaging and projection systems within the DOME, a significantly higher resolution, alternative imaging channels and the ability to customise light wavelengths are achieved (Bio-DOME). This is accompanied by an interactive calibration procedure that is robust to changes in the hardware configuration and provides fluorescence imaging (Fluoro-DOME). These alterations to the fundamental design allow for long-term use of the DOME in an environment of higher temperature and humidity. Thus, long-term imaging of living cells in a wound, with closed-loop control of real-time frontier illumination via projected light patterns, is facilitated.
Original languageEnglish
Article number2
JournalMicro-Bio Robotics
Volume20
Issue number2
DOIs
Publication statusPublished - 12 Apr 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Fingerprint

Dive into the research topics of 'Long-term imaging and spatio-temporal control of living cells using targeted light based on closed-loop feedback'. Together they form a unique fingerprint.

Cite this