Projects per year
Abstract
Nitrogen-vacancy (NV) centers in diamond are appealing nanoscale quantum sensors for temperature, strain, electric fields, and, most notably, magnetic fields. However, the cryogenic temperatures required for low-noise single-shot readout that have enabled the most sensitive NV magnetometry reported to date are impractical for key applications, e.g., biological sensing. Overcoming the noisy readout at room temperature has until now demanded the repeated collection of fluorescent photons, which increases the time cost of the procedure, thus reducing its sensitivity. Here, we show how machine learning can process the noisy readout of a single NV center at room temperature, requiring on average only one photon per algorithm step, to sense magnetic-field strength with a precision comparable to those reported for cryogenic experiments. Analyzing large datasets from NV centers in bulk diamond, we report absolute sensitivities of 60 nT s1/2 including initialization, readout, and computational overheads. We show that dephasing times can be simultaneously estimated and that time-dependent fields can be dynamically tracked at room temperature. Our results dramatically increase the practicality of early-term single-spin sensors.
Original language | English |
---|---|
Article number | 021019 |
Number of pages | 10 |
Journal | Physical Review X |
Volume | 9 |
Issue number | 021019 |
DOIs | |
Publication status | Published - 29 Apr 2019 |
Bibliographical note
including supplementary informationsResearch Groups and Themes
- Bristol Quantum Information Institute
- QETLabs
- Photonics and Quantum
Keywords
- quant-ph
Fingerprint
Dive into the research topics of 'Magnetic-Field Learning Using a Single Electronic Spin in Diamond with One-Photon Readout at Room Temperature'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Programme Grant: Engineering Photonic Quantum Technologies.
Rarity, J. G. (Principal Investigator), O'Brien, J. L. (Principal Investigator), Thompson, M. G. (Co-Investigator), Erven, C. (Co-Investigator), Sahin, D. (Co-Investigator), Marshall, G. D. (Researcher), Barreto, J. (Co-Investigator), Jiang, P. (Collaborator), McCutcheon, W. D. (Researcher), Silverstone, J. W. (Researcher), Sinclair, G. F. (Researcher), Kling, L. (Engineer), Banerjee, A. (Researcher), Wang, J. (Researcher), Santagati, R. (Researcher), Borghi, M. (Researcher), Woodland, E. M. (Manager), Mawdsley, H. C. M. (Administrator) & Faruque, I. I. (Researcher)
16/06/14 → 15/06/19
Project: Research, Parent
Student theses
-
Operating practical quantum devices in the pre-threshold regime
Gentile, A. A. (Author), Laing, A. (Supervisor), Barreto, G.H.-K. (Supervisor) & Thompson, M. G. (Supervisor), 24 Mar 2020Student thesis: Doctoral Thesis › Doctor of Philosophy (PhD)
File