Maintaining a sense of direction during long-range communication on DNA

MD Szczelkun, P Friedhoff, R Seidel

Research output: Contribution to journalArticle (Academic Journal)peer-review

21 Citations (Scopus)

Abstract

Many biological processes rely on the interaction of proteins with multiple DNA sites separated by thousands of base pairs. These long-range communication events can be driven by both the thermal motions of proteins and DNA, and directional protein motions that are rectified by ATP hydrolysis. The present review describes conflicting experiments that have sought to explain how the ATP-dependent Type III restriction–modification enzymes can cut DNA with two sites in an inverted repeat, but not DNA with two sites in direct repeat. We suggest that an ATPase activity may not automatically indicate a DNA translocase, but can alternatively indicate a molecular switch that triggers communication by thermally driven DNA sliding. The generality of this mechanism to other ATP-dependent communication processes such asmismatch repair is also discussed.
Translated title of the contributionMaintaining a sense of direction during long-range communication on DNA
Original languageEnglish
Pages (from-to)404 - 409
Number of pages6
JournalBiochemical Society Transactions
Volume38 (2)
DOIs
Publication statusPublished - Apr 2010

Fingerprint Dive into the research topics of 'Maintaining a sense of direction during long-range communication on DNA'. Together they form a unique fingerprint.

Cite this