Manipulation and Deposition of Complex, Functional Block Copolymer Nanostructures using Optical Tweezers

Oliver Gould, Stuart Box, Andrew Ward, Mitchell A. Winnik, Mervyn Miles*, Ian Manners

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

9 Citations (Scopus)
331 Downloads (Pure)


Block copolymer self-assembly has enabled the creation of a range of solution-phase nanostructures with applications from optoelectronics and biomedicine to catalysis. However, to incorporate such materials into devices a method that facilitates their precise manipulation and deposition is desirable. Herein we describe how optical tweezers can be used to trap, manipulate, and pattern individual cylindrical micelles and larger hybrid micellar materials. Through the combination of TIRF imaging and optical trapping we can precisely control the three-dimensional motion of individual cylindrical block copolymer micelles in solution, enabling the creation of customizable arrays. We also demonstrate that dynamic holographic assembly enables the creation of ordered customizable arrays of complex hybrid block copolymer structures. By creating a program which automatically identifies, traps and then deposits multiple assemblies simultaneously we have been able to dramatically speed up this normally slow process, enabling the fabrication of arrays of hybrid structures containing hundreds of assemblies in minutes rather than hours.
Original languageEnglish
Pages (from-to)3858-3866
Number of pages9
JournalACS Nano
Issue number4
Early online date22 Feb 2019
Publication statusPublished - 23 Apr 2019


  • block copolymers
  • directed assembly
  • nanofibers
  • optical trapping
  • self-assembly

Fingerprint Dive into the research topics of 'Manipulation and Deposition of Complex, Functional Block Copolymer Nanostructures using Optical Tweezers'. Together they form a unique fingerprint.

Cite this