Mantle Transition Zone Receiver Functions for Bermuda: Automation, Quality Control, and Interpretation

Alexander L Burky*, Jessica C E Irving, Frederik J. Simons

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

48 Downloads (Pure)

Abstract

The origin of the Bermuda rise remains ambiguous, despite, or perhaps because of, the existence of sometimes incongruous seismic wave‐speed and discontinuity models in the sub‐Bermudian mantle. Hence, whether Bermuda is the surface manifestation of a mantle plume remains in question. Using the largest data set of seismic records from Bermuda to date, we estimate radial receiver functions at the Global Seismographic Network (GSN) station BBSR in multiple frequency bands, using iterative time‐domain deconvolution. Motivated by synthetic experiments using axisymmetric spectral‐element forward waveform modeling, we devise a quality metric for our receiver functions to aid in the automation and reproduction of mantle transition zone discontinuity studies. We interpret the complex signals we observe by considering the mineralogical controls on mantle transition zone discontinuity structure, and conclude that our results are likely to be indicative of a thicker than average mantle transition zone. Our result is incompatible with the canonical model of a whole mantle plume in an olivine dominated mantle; however, considerations of phase transitions in the garnet system would allow us to reconcile our observations with the possible presence of a through‐going hot thermal anomaly beneath Bermuda.
Original languageEnglish
Article numbere2020JB020177
Number of pages18
JournalJournal of Geophysical Research: Solid Earth
Volume126
Issue number3
Early online date26 Feb 2021
DOIs
Publication statusPublished - 1 Mar 2021

Bibliographical note

Funding Information:
This work was partly supported by the U.S. National Science Foundation under grants EAR-1736046 and OCE-1917085, and by Princeton University. High-performance computing resources were provided by the Princeton Institute for Computational Science & Engineering (PICSciE). Thorough and constructive comments by two anonymous reviewers, and by the associate editor, helped us improve the manuscript significantly.

Funding Information:
This work was partly supported by the U.S. National Science Foundation under grants EAR‐1736046 and OCE‐1917085, and by Princeton University. High‐performance computing resources were provided by the Princeton Institute for Computational Science & Engineering (PICSciE). Thorough and constructive comments by two anonymous reviewers, and by the associate editor, helped us improve the manuscript significantly.

Publisher Copyright:
© 2020. American Geophysical Union. All Rights Reserved.

Keywords

  • Mantle transition zone
  • Seismology
  • Receiver functions

Fingerprint

Dive into the research topics of 'Mantle Transition Zone Receiver Functions for Bermuda: Automation, Quality Control, and Interpretation'. Together they form a unique fingerprint.

Cite this