Maximum likelihood pedigree reconstruction using integer programming

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

Abstract

Pedigrees are `family trees' relating groups of individuals which can usefully be seen as Bayesian networks. The problem of finding a maximum likelihood pedigree from genotypic data is encoded as an integer linear programming problem. Two methods of ensuring that pedigrees are acyclic are considered. Results on obtaining maximum likelihood pedigrees relating 20, 46 and 59 individuals are presented. Running times for larger pedigrees depend strongly on the data used but generally compare well with those in the literature. Solving is particularly fast when allele frequency is uniform.
Original languageEnglish
Title of host publicationWCB10. Workshop on Constraint Based Methods for Bioinformatics
PublisherEasyChair
Pages8-19
Volume4
DOIs
Publication statusPublished - 21 Jul 2010

Publication series

NameEPiC Series in Computing

Fingerprint

Dive into the research topics of 'Maximum likelihood pedigree reconstruction using integer programming'. Together they form a unique fingerprint.

Cite this