Measuring complexity

Karoline Wiesner, James Ladyman

Research output: Contribution to journalArticle (Academic Journal)

210 Downloads (Pure)

Abstract

Complexity is heterogenous, involving nonlinearity, self-organisation, diversity, adaptive behaviour, among other things. It is therefore obviously worth asking whether purported measures of complexity measure aggregate phenomena, or individual aspects of complexity and if so which. This paper uses a recently developed rigorous framework for understanding complexity to answer this question about measurement. The approach is two-fold: find measures of individual aspects of complexity on the one hand, and explain measures of complexity on the other. We illustrate the conceptual framework of complexity science and how it links the foundations to the practised science with examples from different scientific fields and of various aspects of complexity. Furthermore, we analyse a selection of purported measures of complexity that have found wide application and explain why and how they measure aspects of complexity. This work gives the reader a tool to take any existing measure of complexity and analyse it, and to take any feature of complexity and find the right measure for it.
Original languageEnglish
Number of pages11
JournalarXiv
Publication statusAccepted/In press - 29 Sept 2019

Bibliographical note

10 pages

Research Groups and Themes

  • Centre for Science and Philosophy
  • Centre_for_science_and_philosophy

Keywords

  • nlin.AO

Fingerprint

Dive into the research topics of 'Measuring complexity'. Together they form a unique fingerprint.

Cite this