Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in friedreich ataxia fibroblasts

Kevin C Kemp, E Mallam, Kelly M Hares, Jonathan Witherick, Neil J Scolding, Alastair Wilkins

Research output: Contribution to journalArticle (Academic Journal)peer-review

23 Citations (Scopus)

Abstract

Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA)-a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin-have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals. Clinical interventions that restore frataxin expression are attractive therapeutic approaches, as, in theory, it may be possible to re-establish normal function in frataxin deficient cells if frataxin levels are increased above a specific threshold. With this in mind several drugs and cytokines have been tested for their ability to increase frataxin levels. Cell transplantation strategies may provide an alternative approach to this therapeutic aim, and may also offer more widespread cellular protective roles in FRDA. Here we show a direct link between frataxin expression in fibroblasts derived from FRDA patients with both decreased expression of hydrogen peroxide scavenging enzymes and increased sensitivity to hydrogen peroxide-mediated toxicity. We demonstrate that normal human mesenchymal stem cells (MSCs) induce both an increase in frataxin gene and protein expression in FRDA fibroblasts via secretion of soluble factors. Finally, we show that exposure to factors produced by human MSCs increases resistance to hydrogen peroxide-mediated toxicity in FRDA fibroblasts through, at least in part, restoring the expression of the hydrogen peroxide scavenging enzymes catalase and glutathione peroxidase 1. These findings suggest, for the first time, that stem cells may increase frataxin levels in FRDA and transplantation of MSCs may offer an effective treatment for these patients.
Translated title of the contributionMesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in friedreich ataxia fibroblasts
Original languageEnglish
Pages (from-to)e26098 - e26098
Number of pages11
JournalPLoS ONE
Volume6
Issue number10
DOIs
Publication statusPublished - 7 Oct 2011

Fingerprint

Dive into the research topics of 'Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in friedreich ataxia fibroblasts'. Together they form a unique fingerprint.

Cite this