TY - JOUR

T1 - Meta-food-chains as a many-layer epidemic process on networks

AU - Barter, Edmund C G

AU - Gross, Thilo

PY - 2016/2/5

Y1 - 2016/2/5

N2 - Notable recent works have focused on the multilayer properties of coevolving diseases. We point out that very similar systems play an important role in population ecology. Specifically we study a meta-food-web model that was recently proposed by Pillai et al. [Theor. Ecol. 3, 223 (2009)]. This model describes a network of species connected by feeding interactions, which spread over a network of spatial patches. Focusing on the essential case, where the network of feeding interactions is a chain, we develop an analytical approach for the computation of the degree distributions of colonized spatial patches for the different species in the chain. This framework allows us to address ecologically relevant questions. Considering configuration model ensembles of spatial networks, we find that there is an upper bound for the fraction of patches that a given species can occupy, which depends only on the networks mean degree. For a given mean degree there is then an optimal degree distribution that comes closest to the upper bound. Notably scale-free degree distributions perform worse than more homogeneous degree distributions if the mean degree is sufficiently high. Because species experience the underlying network differently the optimal degree distribution for one particular species is generally not the optimal distribution for the other species in the same food web. These results are of interest for conservation ecology, where, for instance, the task of selecting areas of old-growth forest to preserve in an agricultural landscape, amounts to the design of a patch network.

AB - Notable recent works have focused on the multilayer properties of coevolving diseases. We point out that very similar systems play an important role in population ecology. Specifically we study a meta-food-web model that was recently proposed by Pillai et al. [Theor. Ecol. 3, 223 (2009)]. This model describes a network of species connected by feeding interactions, which spread over a network of spatial patches. Focusing on the essential case, where the network of feeding interactions is a chain, we develop an analytical approach for the computation of the degree distributions of colonized spatial patches for the different species in the chain. This framework allows us to address ecologically relevant questions. Considering configuration model ensembles of spatial networks, we find that there is an upper bound for the fraction of patches that a given species can occupy, which depends only on the networks mean degree. For a given mean degree there is then an optimal degree distribution that comes closest to the upper bound. Notably scale-free degree distributions perform worse than more homogeneous degree distributions if the mean degree is sufficiently high. Because species experience the underlying network differently the optimal degree distribution for one particular species is generally not the optimal distribution for the other species in the same food web. These results are of interest for conservation ecology, where, for instance, the task of selecting areas of old-growth forest to preserve in an agricultural landscape, amounts to the design of a patch network.

UR - http://www.scopus.com/inward/record.url?scp=84959322735&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.93.022303

DO - 10.1103/PhysRevE.93.022303

M3 - Article (Academic Journal)

C2 - 26986348

AN - SCOPUS:84959322735

VL - 93

JO - Physical Review E

JF - Physical Review E

SN - 2470-0045

M1 - 022303

ER -