Abstract
We report in situ quadruple sulfur isotope analysis (32S, 33S, 34S and 36S) of a pyritized microbial mat from the ∼3480 Ma Dresser Formation, Pilbara Craton, Western Australia. These data yield positive δ34S and Δ33S,
indicative of sulfur sourced from a pool with similar character as the
putative atmospheric elemental sulfur channel of Pavlov and Kasting
(2002). Contrary to previous data from the Dresser Formation, however,
this pyrite is heavily depleted in 36S with a Δ36S/Δ33S slope of c. −3.6, much steeper than slopes typically seen in other early Archean rock successions (Δ36S/Δ33S ≈ −1)
which suggests either a different atmospheric signature for deposited S
or a different pool altogether. Significant micro-scale isotopic
heterogeneity is observed within the microbial mat (δ34S = +1.6‰ to +6.7‰; Δ33S = +0.4‰ to +2.6‰; Δ36S = −3.1‰ to −8.1‰), implying a role for microbial S metabolism. While metabolic S cycling has been shown to shift Δ36S to lower values, microbial metabolization of S does not appear sufficient to account for the full range of Δ36S.We
conclude that the isotopic composition of the pyrite was controlled by
the relative proportions of mass independently fractionated (MIF) S0
and sulfate-derived sulfur incorporated into polysulfide pyrite
precursors during reactions in the microbial mat. The dominance of the
MIF-S0 isotopic signature (+δ34S, +Δ33S, −Δ36S)
indicates that contributions from the sulfate-derived sulfur pool were
relatively small, consistent with low concentrations of sulfate in
Archean seawater, and that contributions from a non-sulfate pool were
significant. Micro-scale isotopic heterogeneity in the pyrite points to
mixing between the two sulfur pools in selected micro-environments
within the microbial mat. The particularly negative Δ36S observed here reveals a 3480 Ma sulfur reservoir with novel Δ36S/Δ33S chemistry whose significance now requires further investigation.
Original language | English |
---|---|
Pages (from-to) | 24-35 |
Number of pages | 12 |
Journal | Precambrian Research |
Volume | 258 |
Early online date | 30 Dec 2014 |
DOIs | |
Publication status | Published - Mar 2015 |
Keywords
- Sulfur isotopes
- Mass independent fractionation
- Dresser Formation
- Pilbara
- Early life