Microwave Radar Imaging of Heterogeneous Breast Tissue Integrating A Priori Information

Jochen Moll, Thomas N. Kelly, Dallan Byrne, Mantalena Sarafianou, Viktor Krozer, Ian J. Craddock

Research output: Contribution to journalArticle (Academic Journal)peer-review

24 Citations (Scopus)
21 Downloads (Pure)

Abstract

Conventional radar-based image reconstruction techniques fail when they are applied to heterogeneous breast tissue, since the underlying in-breast relative permittivity is unknown or assumed to be constant. This results in a systematic error during the process of image formation. A recent trend in microwave biomedical imaging is to extract the relative permittivity from the object under test to improve the image reconstruction quality and thereby to enhance the diagnostic assessment. In this paper, we present a novel radar-based methodology for microwave breast cancer detection in heterogeneous breast tissue integrating a 3D map of relative permittivity as a priori information. This leads to a novel image reconstruction formulation where the delay-and-sum focusing takes place in time rather than range domain. Results are shown for a heterogeneous dense (class-4) and a scattered fibroglandular (class-2) numerical breast phantom using Bristol’s 31-element array configuration.
Original languageEnglish
Article number943549
Number of pages10
JournalInternational Journal of Biomedical Imaging
Volume2014
Early online date11 Nov 2014
DOIs
Publication statusPublished - 2014

Research Groups and Themes

  • Digital Health
  • SPHERE

Fingerprint

Dive into the research topics of 'Microwave Radar Imaging of Heterogeneous Breast Tissue Integrating A Priori Information'. Together they form a unique fingerprint.
  • SPHERE (EPSRC IRC)

    Craddock, I. J. (Principal Investigator), Coyle, D. T. (Principal Investigator), Flach, P. A. (Principal Investigator), Kaleshi, D. (Principal Investigator), Mirmehdi, M. (Principal Investigator), Piechocki, R. J. (Principal Investigator), Stark, B. H. (Principal Investigator), Ascione, R. (Co-Principal Investigator), Ashburn, A. M. (Collaborator), Burnett, M. E. (Collaborator), Damen, D. (Co-Principal Investigator), Gooberman-Hill, R. (Principal Investigator), Harwin, W. S. (Collaborator), Hilton, G. (Co-Principal Investigator), Holderbaum, W. (Collaborator), Holley, A. P. (Manager), Manchester, V. A. (Administrator), Meller, B. J. (Other ), Stack, E. (Collaborator) & Gilchrist, I. D. (Principal Investigator)

    1/10/1330/09/18

    Project: Research, Parent

Cite this