Modeling mechanisms of cell secretion

KT Tsaneva-Atanasova, HM Osinga, Joel Tabak, Gram Pedersen, Morte

Research output: Working paper

426 Downloads (Pure)


Secretion is a fundamental cellular process involving the regulated release of intracellular products from cells. Physiological functions such as neurotransmission, or the release of hormones and digestive enzymes, are all governed by cell secretion. Anomalies in the processes involved in secretion contribute to the development and progression of diseases such as diabetes and other hormonal disorders. To unravel the mechanisms that govern such diseases, it is essential to understand how hormones, growth factors and neurotransmitters are synthesised and processed, and how their signals are recognized, amplified and transmitted by intracellular signaling pathways in the target cells. Here, we discuss diverse aspects of the detailed mechanisms involved in secretion in light of mathematical models. The models range from stochastic ones describing the trafficking of secretory vesicles to deterministic ones investigating the regulation of cellular processes that underlie hormonal secretion. In all cases, the models are closely related to experimental results and suggest theoretical predictions for the secretion mechanisms.
Original languageEnglish
Publication statusUnpublished - Jun 2009

Bibliographical note

Additional information: Preprint version of a paper given at the European Conference on Mathematical and Theoretical Biology (ECMTB), 2008

Sponsorship: KTA acknowledges funding from grant EP/E032249/1 of the Engineering and Physical Sciences Research Council (EPSRC). HMO was supported by an EPSRC Advanced Research Fellowship and an IGERT grant of the National Science Foundation.

Structured keywords

  • Engineering Mathematics Research Group


  • hormone secretion
  • exocytosis
  • bifurcation analysis
  • mathematical model
  • vesicles


Dive into the research topics of 'Modeling mechanisms of cell secretion'. Together they form a unique fingerprint.

Cite this