Modelling circumbinary protoplanetary disks: II. Gas disk feedback on planetesimal dynamical and collisional evolution in the circumbinary systems Kepler-16 and 34

Stefan Lines, Zoe Leinhardt, Philip Carter, Sijme-Jan Paardekooper, Clément Baruteau

Research output: Contribution to journalArticle (Academic Journal)peer-review

9 Citations (Scopus)
205 Downloads (Pure)

Abstract

Aims. We investigate the feasibility of planetesimal growth in circumbinary protoplanetary disks around the observed systems Kepler-16 and Kepler-34 under the gravitational influence of a precessing eccentric gas disk.
Methods. We embed the results of our previous hydrodynamical simulations of protoplanetary disks around binaries into an N-body code to perform 3D, high-resolution, inter-particle gravity-enabled simulations of planetesimal growth and dynamics that include the gravitational force imparted by the gas.
Results. Including the full, precessing asymmetric gas disk generates high eccentricity orbits for planetesimals orbiting at the edge of the circumbinary cavity, where the gas surface density and eccentricity have their largest values. The gas disk is able to efficiently align planetesimal pericenters in some regions leading to phased, non-interacting orbits. Outside of these areas eccentric planetesimal orbits become misaligned and overlap leading to crossing orbits and high relative velocities during planetesimal collisions. This can lead to an increase in the number of erosive collisions that far outweighs the number of collisions that result in growth. Gravitational focusing from the static axisymmetric gas disk is weak and does not significantly alter collision outcomes from the gas free case.
Conclusions. Due to asymmetries in the gas disk, planetesimals are strongly perturbed onto highly eccentric orbits. Where planetesimals orbits are not well aligned, orbit crossings lead to an increase in the number of erosive collisions. This makes it difficult for sustained planetesimal accretion to occur at the location of Kepler-16b and Kepler-34b and we therefore rule out in-situ growth. This adds further support to our initial suggestions that most circumbinary planets should form further out in the disk and migrate inwards.
Original languageEnglish
Article numberA62
Number of pages12
JournalAstronomy and Astrophysics
Volume590
Early online date11 May 2016
DOIs
Publication statusPublished - Jun 2016

Keywords

  • methods: numerical
  • hydrodynamics
  • planets and satellites: formation
  • protoplanetary disks
  • binaries: close

Fingerprint

Dive into the research topics of 'Modelling circumbinary protoplanetary disks: II. Gas disk feedback on planetesimal dynamical and collisional evolution in the circumbinary systems Kepler-16 and 34'. Together they form a unique fingerprint.
  • HPC (High Performance Computing) Facility

    Susan L Pywell (Manager), Simon A Burbidge (Other), Polly E Eccleston (Other) & Simon H Atack (Other)

    Facility/equipment: Facility

Cite this