TY - JOUR
T1 - Modelling the lifetime cost-effectiveness of radical prostatectomy, radiotherapy and active monitoring for men with clinically localised prostate cancer from median 10year outcomes in the ProtecT randomised trial
AU - Sanghera, Sabina
AU - Mohiuddin, Syed G
AU - Coast, Joanna
AU - Garfield, Kirsty M
AU - Noble, Sian M
AU - Metcalfe, Chris
AU - Lane, J. Athene
AU - Turner, Emma L
AU - Neal, David
AU - Hamdy, Freddie C.
AU - Martin, Richard M
AU - Donovan , Jenny L
PY - 2020/10/8
Y1 - 2020/10/8
N2 - Background
Optimal management strategies for clinically localised prostate cancer are debated. Using median 10-year data from the largest randomised controlled trial to date (ProtecT), the lifetime cost-effectiveness of three major treatments (radical radiotherapy, radical prostatectomy and active monitoring) was explored according to age and risk subgroups.
Methods
A decision-analytic (Markov) model was developed and informed by clinical input. The economic evaluation adopted a UK NHS perspective and the outcome was cost per Quality-Adjusted Life Year (QALY) gained (reported in UK£), estimated using EQ-5D-3L.
Results
Costs and QALYs extrapolated over the lifetime were mostly similar between the three randomised strategies and their subgroups, but with some important differences. Across all analyses, active monitoring was associated with higher costs, probably associated with higher rates of metastatic disease and changes to radical treatments.
When comparing the value of the strategies (QALY gains and costs) in monetary terms, for both low-risk prostate cancer subgroups, radiotherapy generated the greatest net monetary benefit (£293,446 [95% CI £282,811 to £299,451] by D’Amico and £292,736 [95% CI £284,074 to £297,719] by Grade group 1). However, the sensitivity analysis highlighted uncertainty in the finding when stratified by Grade group, as radiotherapy had 53% probability of cost-effectiveness and prostatectomy had 43%. In intermediate/high risk groups, using D’Amico and Grade group > = 2, prostatectomy generated the greatest net monetary benefit (£275,977 [95% CI £258,630 to £285,474] by D’Amico and £271,933 [95% CI £237,864 to £287,784] by Grade group). This finding was supported by the sensitivity analysis.
Prostatectomy had the greatest net benefit (£290,487 [95% CI £280,781 to £296,281]) for men younger than 65 and radical radiotherapy (£201,311 [95% CI £195,161 to £205,049]) for men older than 65, but sensitivity analysis showed considerable uncertainty in both findings.
Conclusion
Over the lifetime, extrapolating from the ProtecT trial, radical radiotherapy and prostatectomy appeared to be cost-effective for low risk prostate cancer, and radical prostatectomy for intermediate/high risk prostate cancer, but there was uncertainty in some estimates. Longer ProtecT trial follow-up is required to reduce uncertainty in the model.
AB - Background
Optimal management strategies for clinically localised prostate cancer are debated. Using median 10-year data from the largest randomised controlled trial to date (ProtecT), the lifetime cost-effectiveness of three major treatments (radical radiotherapy, radical prostatectomy and active monitoring) was explored according to age and risk subgroups.
Methods
A decision-analytic (Markov) model was developed and informed by clinical input. The economic evaluation adopted a UK NHS perspective and the outcome was cost per Quality-Adjusted Life Year (QALY) gained (reported in UK£), estimated using EQ-5D-3L.
Results
Costs and QALYs extrapolated over the lifetime were mostly similar between the three randomised strategies and their subgroups, but with some important differences. Across all analyses, active monitoring was associated with higher costs, probably associated with higher rates of metastatic disease and changes to radical treatments.
When comparing the value of the strategies (QALY gains and costs) in monetary terms, for both low-risk prostate cancer subgroups, radiotherapy generated the greatest net monetary benefit (£293,446 [95% CI £282,811 to £299,451] by D’Amico and £292,736 [95% CI £284,074 to £297,719] by Grade group 1). However, the sensitivity analysis highlighted uncertainty in the finding when stratified by Grade group, as radiotherapy had 53% probability of cost-effectiveness and prostatectomy had 43%. In intermediate/high risk groups, using D’Amico and Grade group > = 2, prostatectomy generated the greatest net monetary benefit (£275,977 [95% CI £258,630 to £285,474] by D’Amico and £271,933 [95% CI £237,864 to £287,784] by Grade group). This finding was supported by the sensitivity analysis.
Prostatectomy had the greatest net benefit (£290,487 [95% CI £280,781 to £296,281]) for men younger than 65 and radical radiotherapy (£201,311 [95% CI £195,161 to £205,049]) for men older than 65, but sensitivity analysis showed considerable uncertainty in both findings.
Conclusion
Over the lifetime, extrapolating from the ProtecT trial, radical radiotherapy and prostatectomy appeared to be cost-effective for low risk prostate cancer, and radical prostatectomy for intermediate/high risk prostate cancer, but there was uncertainty in some estimates. Longer ProtecT trial follow-up is required to reduce uncertainty in the model.
KW - Prostate cancer
KW - ProtecT trial
KW - Lifetime cost-effectiveness
KW - Active monitoring
KW - Radiotherapy
KW - Prostatectomy
U2 - 10.1186/s12885-020-07276-4
DO - 10.1186/s12885-020-07276-4
M3 - Article (Academic Journal)
C2 - 33028256
SN - 1471-2407
VL - 20
JO - BMC Cancer
JF - BMC Cancer
M1 - 971 (2020)
ER -