Multiphase lattice metamaterials with enhanced mechanical performance

Fatih Usta*, Fabrizio L Scarpa, Halit Türkmen, Peter Johnson, Adam W Perriman, Yanyu Chen

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)

Abstract

We describe here the quasi-static crushing behavior of novel classes of multiphase (hybrid) hierarchical lattice metamaterials. The first class is represented by a hybrid architecture combining a hierarchical honeycomb with polyurethane foam filler, while the second is a multiphase structure produced by injecting an alginate hydrogel into the hierarchical voids of the honeycomb metamaterial. Twelve different auxetic (i.e., negative Poisson’s ratio) and non-auxetic metamaterial architectures have been 3D printed and subjected to edgewise compression crushing loading. A parametric numerical analysis has been also performed using validated Finite Element models to identify best metamaterial architecture configurations. Configurations filled with the hydrogel showed a significant stabilization of the deformation mechanism during large deformation edgewise compression. The use of metamaterials designs with internal slots and round in the ribs also filled by polyurethane rigid (PUR) semi-reticulated foam feature however significant increases in terms of specific stiffness, mean crushing force, strength and energy absorption. The enhancement is particularly evident for the hybrid lattice metamaterials auxetic configurations.
Original languageEnglish
JournalSmart Materials and Structures
Publication statusAccepted/In press - 9 Nov 2020

Keywords

  • Mechanical metamaterials
  • hierarchical honeycombs
  • auxetics
  • multiphase
  • hybrid
  • quasi-static crushing behavior

Fingerprint Dive into the research topics of 'Multiphase lattice metamaterials with enhanced mechanical performance'. Together they form a unique fingerprint.

Cite this