MULTISCALE DAMAGE ANALYSIS OF A PLAIN CARBON WEAVE INCORPORATING MATERIAL VARIABILITY

Luis Filipe Varandas, A R Melro, G. Catalanotti, Brian G Falzon

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

Abstract

The mechanical behaviour and progressive damage of a plain woven carbon-epoxy fabric at different length scales is modelled, taking into account the weave's geometric, and consequently, material variability. Micromechanical simulations are performed with different fibre volume fractions using a fibre distribution algorithm in order to obtain the mechanical properties of the tows along their length. A Representative Unit Cell (RUC) is generated and a set of in-plane Periodic Boundary Conditions (PBCs) implemented in order to run non-homogenised mesomechanical analyses. The influence of material variability is captured through volumetric homogenisation to study damage evolution and corresponding stiffness degradation in a plain weave fibre architecture under different loading conditions.
Original languageEnglish
Title of host publicationECCM18 Proceedings
Publication statusPublished - 2018

Fingerprint Dive into the research topics of 'MULTISCALE DAMAGE ANALYSIS OF A PLAIN CARBON WEAVE INCORPORATING MATERIAL VARIABILITY'. Together they form a unique fingerprint.

Cite this