Multiscale hybrid atomistic-FE approach for the nonlinear tensile behaviour of graphene nanocomposites

Fabrizio Scarpa, Y. Chandra, R. Chowdhury, Sondipon Adhikari, J. Sienz

Research output: Contribution to journalArticle (Academic Journal)peer-review

44 Citations (Scopus)

Abstract

The paper introduces a multiscale modelling approach to simulate the nonlinear tensile behaviour of nancomposites with single layer graphene (SLG) reinforcement. The graphene nanoinclusions are represented at the nano scale through an atomistic Finite Element model and the matrix material is approximated by continuum 3D elements. Two different configurations of SLG composites have been studied based on a continuous and short type of reinforcements. The effect of the orientation of graphene sheet on the stiffness of the composite structure has also been evaluated. The multiscale model presented in this work is able to predict features such as debonding, nonlinearity in polymer and strain based damage criteria for the matrix. Stiffness and strength values computed with this model compare well with experimental results available in open literature.
Original languageEnglish
JournalComposites Part A: Applied Science and Manufacturing
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Multiscale hybrid atomistic-FE approach for the nonlinear tensile behaviour of graphene nanocomposites'. Together they form a unique fingerprint.

Cite this