Abstract
A number of thin wire formalisms for use in the FDTD method have been published over the years. One such formalism was published by Holland and Simpson (IEEE Trans., EMC-23, no. 2, pp. 88-97, 1981). Later, Ledfelt (Ph.D. Dissertation, Royal Institute of Technology, Stockholm, 2001) enhanced the method in order to improve the accuracy for arbitrarily positioned wires by using a "shell average" in order to derive the average electric field around the wire. This approach was further developed by Edelvik (Tech. Report no. 2002-016, Uppsala University, Sweden, 2002), who introduced a newly defined basis function to represent the current density around the wire. Very recently Koh et al (IEE Proc. 2004) extended this approach to allow wire transmission line problems to be treated. In this paper the methods used in Koh et al are, for the first time, applied to the treatment of narrow strips with various terminations. It is shown that, with the correct choice of in-cell inductance and the appropriate use of tri-linear distribution and shell-average interpolation, accurate results can be obtained without the need for a fine FDTD mesh.
Translated title of the contribution | Narrow strip above ground plane transmission line formulation in the FDTD algorithm |
---|---|
Original language | English |
Title of host publication | IEEE Antennas and Propagation Society International Symposium 2004, Monterey, USA |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 81 - 84 |
Number of pages | 4 |
Volume | 1 |
ISBN (Print) | 0780383028 |
DOIs | |
Publication status | Published - Jun 2004 |
Event | IEEE Antennas and Propagation Society International Symposium - Monterey, United States Duration: 1 Jun 2004 → … |
Conference
Conference | IEEE Antennas and Propagation Society International Symposium |
---|---|
Country/Territory | United States |
City | Monterey |
Period | 1/06/04 → … |
Bibliographical note
Rose publication type: Conference contributionTerms of use: Copyright © 2004 IEEE. Reprinted from IEEE Antennas and Propagation Society International Symposium, 2004. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Bristol's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Keywords
- finite difference time-domain analysis (FDTD)
- interpolation
- transmission line theory