Abstract
Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. To demonstrate the utility of NEMBASE4, we have used the database to examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.
Original language | English |
---|---|
Pages (from-to) | 881-94 |
Number of pages | 14 |
Journal | International Journal for Parasitology |
Volume | 41 |
Issue number | 8 |
DOIs | |
Publication status | Published - Jul 2011 |
Keywords
- Animals
- Computational Biology
- Databases, Genetic
- Expressed Sequence Tags
- Gene Expression Profiling
- Nematoda
- Journal Article
- Research Support, Non-U.S. Gov't