## Abstract

We apply a nested variant of multigrade efficient congruencing to estimate mean values related to that of Vinogradov. We show that when ϕj ∈ Z[t] (1 ≤ j ≤ k) is a system of polynomials with non-vanishing Wronskian, and s ≤ k(k + 1)/2, then for all complex sequences (a
_{n}
), and for each ε > 0, one has (Formula presented.) As a special case of this result, we confirm the main conjecture in Vinogradov's mean value theorem for all exponents (Formula presented.), recovering the recent conclusions of the author (for k = 3) and Bourgain, Demeter and Guth (for k ≥ 4). In contrast with the l
^{2}
-decoupling method of the latter authors, we make no use of multilinear Kakeya estimates, and thus our methods are of sufficient flexibility to be applicable in algebraic number fields, and in function fields. We outline such extensions.

Original language | English |
---|---|

Pages (from-to) | 942-1016 |

Number of pages | 75 |

Journal | Proceedings of the London Mathematical Society |

Volume | 118 |

Issue number | 4 |

Early online date | 25 Oct 2018 |

DOIs | |

Publication status | Published - 2 Apr 2019 |

## Keywords

- 11L07
- 11L15
- 11P55 (primary)