No-where averagely differentiable functions: Baire category and the Takagi function

D. Allen, C. Arthur, R. Dougall, H. Edwards, L. Olsen*, M. Véges

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

Abstract

A classical and well-known result due to Banach and Mazurkiewicz says that a typical (in the sense of Baire) continuous function on the unit interval is no-where differentiable. In this paper we prove that a typical (in the sense of Baire) continuous function f on [0, 1] is spectacularly more irregular than suggested by Banach and Mazurkiewicz's result. Namely, not only is the difference quotient f(x+h)-f(x)/h divergent as h → 0 for all x, but the function h → f(x+h)-f(x)/h diverges so badly as h → 0, that it remains divergent even after being "smoothened out" using iterated Cesaro averages of arbitrary high order. More precisely, we introduce the notion of higher order average differentiability based on iterated Cesaro averages and prove that not only is a typical (in the sense of Baire) continuous function on [0, 1] no-where differentiable, but it is even no-where averagely differentiable of any order. We also show that the no-where differentiable Takagi function is, in fact, no-where averagely differentiable.

Original languageEnglish
Pages (from-to)1-27
Number of pages27
JournalMonatshefte fur Mathematik
Volume172
Issue number1
DOIs
Publication statusPublished - 1 Oct 2013

Keywords

  • Baire category
  • Cesaro averages
  • Differentiability
  • Takagi function

Fingerprint

Dive into the research topics of 'No-where averagely differentiable functions: Baire category and the Takagi function'. Together they form a unique fingerprint.

Cite this