TY - JOUR
T1 - Nonlinear anisotropic diffusive filtering applied to the ocean's mean dynamic topography
AU - Bingham, R. J.
PY - 2010/12/1
Y1 - 2010/12/1
N2 - Despite the improvement in global geoid determination that the Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided, it remains necessary to filter the ocean'smean dynamic topography (MDT) that is derived fromit to remove residual noise. A standard approach is to use isotropic spatial smoothing. Unfortunately, this also attenuatesMDT gradients associated with surface currents. Here an alternative, anisotropic approach taken from the field of image processing that preferentially filters along rather than across gradients is presented. Applying the method to theMDT of the North Atlantic, it is found that attenuation ofMDT gradients corresponding to important currents such as the Gulf Stream and Labrador Current ismuch reduced.Along the axis of theGulf Stream, this translates in places to more than a doubling in the estimated current speed compared to a conventionally filtered MDT.
AB - Despite the improvement in global geoid determination that the Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided, it remains necessary to filter the ocean'smean dynamic topography (MDT) that is derived fromit to remove residual noise. A standard approach is to use isotropic spatial smoothing. Unfortunately, this also attenuatesMDT gradients associated with surface currents. Here an alternative, anisotropic approach taken from the field of image processing that preferentially filters along rather than across gradients is presented. Applying the method to theMDT of the North Atlantic, it is found that attenuation ofMDT gradients corresponding to important currents such as the Gulf Stream and Labrador Current ismuch reduced.Along the axis of theGulf Stream, this translates in places to more than a doubling in the estimated current speed compared to a conventionally filtered MDT.
UR - http://www.scopus.com/inward/record.url?scp=78751489653&partnerID=8YFLogxK
U2 - 10.1080/01431161003743165
DO - 10.1080/01431161003743165
M3 - Article (Academic Journal)
AN - SCOPUS:78751489653
SN - 2150-704X
VL - 1
SP - 205
EP - 212
JO - Remote Sensing Letters
JF - Remote Sensing Letters
IS - 4
ER -