TY - JOUR
T1 - Numerical analysis of coherent many-body currents in a single atom transistor
AU - Daley, A. J.
AU - Clark, S. R.
AU - Jaksch, D.
AU - Zoller, P.
PY - 2005/10/1
Y1 - 2005/10/1
N2 - We study the dynamics of many atoms in the recently proposed single-atom-transistor setup [A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, Phys. Rev. Lett. 93, 140408 (2004)] using recently developed numerical methods. In this setup, a localized spin-12 impurity is used to switch the transport of atoms in a one-dimensional optical lattice: in one state the impurity is transparent to probe atoms, but in the other acts as a single-atom mirror. We calculate time-dependent currents for bosons passing the impurity atom, and find interesting many-body effects. These include substantially different transport properties for bosons in the strongly interacting (Tonks) regime when compared with fermions, and an unexpected decrease in the current when weakly interacting probe atoms are initially accelerated to a nonzero mean momentum. We also provide more insight into the application of our numerical methods to this system, and discuss open questions about the currents approached by the system on long time scales.
AB - We study the dynamics of many atoms in the recently proposed single-atom-transistor setup [A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, Phys. Rev. Lett. 93, 140408 (2004)] using recently developed numerical methods. In this setup, a localized spin-12 impurity is used to switch the transport of atoms in a one-dimensional optical lattice: in one state the impurity is transparent to probe atoms, but in the other acts as a single-atom mirror. We calculate time-dependent currents for bosons passing the impurity atom, and find interesting many-body effects. These include substantially different transport properties for bosons in the strongly interacting (Tonks) regime when compared with fermions, and an unexpected decrease in the current when weakly interacting probe atoms are initially accelerated to a nonzero mean momentum. We also provide more insight into the application of our numerical methods to this system, and discuss open questions about the currents approached by the system on long time scales.
UR - http://www.scopus.com/inward/record.url?scp=28844450117&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.72.043618
DO - 10.1103/PhysRevA.72.043618
M3 - Article (Academic Journal)
AN - SCOPUS:28844450117
SN - 1050-2947
VL - 72
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 4
M1 - 043618
ER -