Abstract
BACKGROUND: The UVB and heat rekindling (UVB/HR) model shows potential as a translatable inflammatory pain model. However, the occurrence of central sensitization in this model, a fundamental mechanism underlying chronic pain, has been debated. Face, construct and predictive validity are key requisites of animal models; electromyogram (EMG) recordings were utilized to objectively demonstrate validity of the rat UVB/HR model.
METHODS: The UVB/HR model was induced on the heel of the hind paw under anaesthesia. Mechanical withdrawal thresholds (MWTs) were obtained from biceps femoris EMG responses to a gradually increasing pinch at the mid hind paw region under alfaxalone anaesthesia, 96 h after UVB irradiation. MWT was compared between UVB/HR and SHAM-treated rats (anaesthetic only). Underlying central mechanisms in the model were pharmacologically validated by MWT measurement following intrathecal N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, or saline.
RESULTS: Secondary hyperalgesia was confirmed by a significantly lower pre-drug MWT {mean [±standard error of the mean (SEM)]} in UVB/HR [56.3 (±2.1) g/mm(2) , n = 15] compared with SHAM-treated rats [69.3 (±2.9) g/mm(2) , n = 8], confirming face validity of the model. Predictive validity was demonstrated by the attenuation of secondary hyperalgesia by MK-801, where mean (±SEM) MWT was significantly higher [77.2 (±5.9) g/mm(2) n = 7] in comparison with pre-drug [57.8 (±3.5) g/mm(2) n = 7] and saline [57.0 (±3.2) g/mm(2) n = 8] at peak drug effect. The occurrence of central sensitization confirmed construct validity of the UVB/HR model.
CONCLUSIONS: This study used objective outcome measures of secondary hyperalgesia to validate the rat UVB/HR model as a translational model of inflammatory pain.
Original language | English |
---|---|
Pages (from-to) | 1199-206 |
Number of pages | 8 |
Journal | European Journal of Pain |
Volume | 18 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1 Sept 2014 |