On the Temperature Dependence of Enzyme-catalyzed Rates

VL Arcus, Erica J Prentice, JK Hobbs, Adrian J Mulholland, Marc W Van der Kamp, Christopher R Pudney, EJ Parker, Louis A Schipper

Research output: Contribution to journalArticle (Academic Journal)peer-review

82 Citations (Scopus)
386 Downloads (Pure)

Abstract

One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability and temperature-dependent regulation, for example. We have coined the phrase “macromolecular rate theory (MMRT)” to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ∆Cp‡ that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ∆Cp‡ is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ∆Cp‡ has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a “psychrophilic trap” which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes and enzymes drive much of metabolism. Therefore we also expect to see characteristics of MMRT at the level of cells, whole organisms and even ecosystems.
Original languageEnglish
Pages (from-to)1681–1688
Number of pages8
JournalBiochemistry
Volume55
Issue number12
Early online date16 Feb 2016
DOIs
Publication statusPublished - 29 Mar 2016

Structured keywords

  • BrisSynBio
  • Bristol BioDesign Institute

Fingerprint Dive into the research topics of 'On the Temperature Dependence of Enzyme-catalyzed Rates'. Together they form a unique fingerprint.

Cite this