One-Dimensional Disordered Quantum Mechanics and Sinai Diffusion with Random Absorbers

Aurelien Grabsch, Christophe Texier, Yves J M Tourigny

Research output: Contribution to journalArticle (Academic Journal)peer-review

14 Citations (Scopus)
325 Downloads (Pure)


We study the one-dimensional Schrödinger equation with a disordered potential of the form V(x)=ϕ(x)2+ϕ′(x)+κ(x)where ϕ(x) is a Gaussian white noise with mean μg and variance g, and κ(x) is a random superposition of delta functions distributed uniformly on the real line with mean density ρ and mean strength v. Our study is motivated by the close connection between this problem and classical diffusion in a random environment (the Sinai problem) in the presence of random absorbers: ϕ(x) models the force field acting on the diffusing particle and κ(x) models the absorption properties of the medium in which the diffusion takes place. The focus is on the calculation of the complex Lyapunov exponent Ω(E)=γ(E)−iπN(E), where N is the integrated density of states per unit length and γ the reciprocal of the localisation length. By using the continuous version of the Dyson–Schmidt method, we find an exact formula, in terms of a Hankel function, in the particular case where the strength of the delta functions is exponentially-distributed with mean v=2g. Building on this result, we then solve the general case— in the low-energy limit— in terms of an infinite sum of Hankel functions. Our main result, valid without restrictions on the parameters of the model, is that the integrated density of states exhibits the power law behaviour N(E)∼E→0+Eνwhere ν=μ2+2ρ/g−−−−−−−−√.This confirms and extends several results obtained previously by approximate methods.
Original languageEnglish
Pages (from-to)237–276
Number of pages40
JournalJournal of Statistical Physics
Issue number2
Early online date28 Feb 2014
Publication statusPublished - 1 Apr 2014


  • Primary 82B44
  • Secondary 60G51
  • Disordered 1D quantum mechanics
  • Anderson localisation
  • Classical diffusion in random environment
  • Sinai problem


Dive into the research topics of 'One-Dimensional Disordered Quantum Mechanics and Sinai Diffusion with Random Absorbers'. Together they form a unique fingerprint.

Cite this