Open circle maps: small hole asymptotics

Carl Dettmann*

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

17 Citations (Scopus)

Abstract

We consider escape from chaotic maps through a subset of phase space, the hole. Escape rates are known to be locally constant functions of the hole position and size. In spite of this, for the doubling map we can extend the current best result for small holes, a linear dependence on hole size h, to include a smooth h(2) ln h term and explicit fractal terms to h(2) and higher orders, confirmed by numerical simulations. For more general hole locations the asymptotic form depends on a dynamical Diophantine condition using periodic orbits ordered by stability.

Original languageEnglish
Pages (from-to)307-317
Number of pages11
JournalNonlinearity
Volume26
Issue number1
DOIs
Publication statusPublished - Jan 2013

Keywords

  • HAUSDORFF DIMENSION
  • CONTINUED-FRACTION
  • ESCAPE RATES
  • SETS
  • SYSTEMS

Cite this