Abstract
The dynamics of passenger aircraft on the ground are influenced by the nonlinear
characteristics of several components, including geometric nonlinearities, the aerody-
namics and interactions at the tyre-ground interface. We present a fully parametrised
mathematical model of a typical passenger aircraft that includes all relevant nonlinear
effects. The full equations of motion are derived from first principles in terms of forces
and moments acting on a rigid airframe, and they include implementations of the local
models of individual components. The overall model has been developed from and
validated against an existing industry-tested SimMechanics model.
The key advantage of the mathematical model is that it allows for comprehensive
studies of solutions and their stability with methods from dynamical systems theory,
in particular, the powerful tool of numerical continuation. As a concrete example,
we present a bifurcation study of how fixed-radius turning solutions depend on the
aircraft’s steering angle and centre of gravity position. These results are represented in
a compact form as surfaces of solutions, on which we identify regions of stable turning
and regions of laterally unstable solutions. The boundaries between these regions are
computed directly and they allow us to determine ranges of parameter values for safe
operation. The robustness of these results under the variation of additional parameters,
specifically, the engine thrust and aircraft mass, are investigated. Qualitative changes
in the structure of the solutions are identified and explained in detail. Overall our
results give a complete description of the possible turning dynamics of the aircraft in
dependence on four parameters of operational relevance.
Translated title of the contribution | Operational parameter study of aircraft dynamics on the ground |
---|---|
Original language | English |
Article number | 021007 |
Pages (from-to) | - |
Number of pages | 11 |
Journal | Journal of Computational and Nonlinear Dynamics |
Volume | 5 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2009 |
Bibliographical note
Other: Accepted for publicationRose publication type: Journal article
Sponsorship: This research is supported by an Engineering and Physical Sciences Research Council (EPSRC)
Case Award grant in collaboration with Airbus in the UK.
Keywords
- Aircraft
- dynamics
- ground
- manoeuvres
- bifurcation
- continuation