Orientation effects in short fibre-reinforced elastomers

Jacopo Ciambella, David C. Stanier*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

2 Citations (Scopus)

Abstract

The large strain behaviour of a short fibre-reinforced composite is studied through numerical simulations. The reinforcing fibres yield the macroscopic response transversely isotropic which is indeed the case of many reinforcements currently used in composites: short carbon fibres, cellulose whiskers, carbon nanotubes. As a result of the analysis, it is shown that the reorientation of the fibres that takes place at large strain has a significant effect on the overall material response by changing the axis of isotropy. This behaviour can be adequately described by using a transversely isotropic model whose strain energy function depends on three invariants: two isotropic and one representing the stretch along the direction of the fibres. To assess its capabilities, the model is compared to the results of experiments carried out by the authors on nickel-coated chopped carbon fibres in a vulcanised natural rubber matrix for which the fibre orientation is achieved by controlling an external magnetic field prior to curing. Possible applications include micro-sized propulsion devices and actuators.

Original languageEnglish
Title of host publicationASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
PublisherAmerican Society of Mechanical Engineers (ASME)
Volume9
DOIs
Publication statusPublished - 2014
EventASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 - Montreal, Canada
Duration: 14 Nov 201420 Nov 2014

Conference

ConferenceASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014
CountryCanada
CityMontreal
Period14/11/1420/11/14

Fingerprint Dive into the research topics of 'Orientation effects in short fibre-reinforced elastomers'. Together they form a unique fingerprint.

  • Cite this

    Ciambella, J., & Stanier, D. C. (2014). Orientation effects in short fibre-reinforced elastomers. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) (Vol. 9). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE2014-40430