Overconfidence in climate overshoot

Carl Friedrich Schleussner*, Gaurav Ganti, Quentin Lejeune, Biqing Zhu, Peter Pfleiderer, Ruben Prütz, Philippe Ciais, Thomas L. Frölicher, Sabine Fuss, Thomas Gasser, Matthew J. Gidden, Chahan M. Kropf, Fabrice Lacroix, Robin Lamboll, Rosanne Martyr, Fabien Maussion, Jamie W. McCaughey, Malte Meinshausen, Matthias Mengel, Zebedee NichollsYann Quilcaille, Benjamin Sanderson, Sonia I. Seneviratne, Jana Sillmann, Norman J. Steinert, Emily Theokritoff, Rachel Warren, Jeff Price, Joeri Rogelj

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

7 Citations (Scopus)

Abstract

Global emission reduction efforts continue to be insufficient to meet the temperature goal of the Paris Agreement1. This makes the systematic exploration of so-called overshoot pathways that temporarily exceed a targeted global warming limit before drawing temperatures back down to safer levels a priority for science and policy2–5. Here we show that global and regional climate change and associated risks after an overshoot are different from a world that avoids it. We find that achieving declining global temperatures can limit long-term climate risks compared with a mere stabilization of global warming, including for sea-level rise and cryosphere changes. However, the possibility that global warming could be reversed many decades into the future might be of limited relevance for adaptation planning today. Temperature reversal could be undercut by strong Earth-system feedbacks resulting in high near-term and continuous long-term warming6,7. To hedge and protect against high-risk outcomes, we identify the geophysical need for a preventive carbon dioxide removal capacity of several hundred gigatonnes. Yet, technical, economic and sustainability considerations may limit the realization of carbon dioxide removal deployment at such scales8,9. Therefore, we cannot be confident that temperature decline after overshoot is achievable within the timescales expected today. Only rapid near-term emission reductions are effective in reducing climate risks.

Original languageEnglish
Pages (from-to)366-373
Number of pages8
JournalNature
Volume634
Issue number8033
Early online date9 Oct 2024
DOIs
Publication statusPublished - 10 Oct 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Fingerprint

Dive into the research topics of 'Overconfidence in climate overshoot'. Together they form a unique fingerprint.

Cite this