Abstract
Background: The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multi-centre case-control study.
Methods: We genotyped ten rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42,671 cases and 42,164 controls), as well as prostate (22,301 cases and 22,320 controls) and ovarian cancer (14,542 cases and 23,491 controls) risk, for each variant.
Results: For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39-8.52; p=7.1x10-5), PALB2 c.3113G>A OR 4.21 (95% CI 1.84-9.60; p=6.9x10-8) and ATM c.7271T>G OR 11.0 (95% CI 1.42-85.7; p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G, c.1036C>T and c.538C>T (p ≤ 0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53-6.03; p=0.0006) for African men and CHEK2 c.1312G>T (OR 2.21 95% CI 1.06-4.63; p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants.
Conclusion: This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.
Methods: We genotyped ten rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42,671 cases and 42,164 controls), as well as prostate (22,301 cases and 22,320 controls) and ovarian cancer (14,542 cases and 23,491 controls) risk, for each variant.
Results: For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39-8.52; p=7.1x10-5), PALB2 c.3113G>A OR 4.21 (95% CI 1.84-9.60; p=6.9x10-8) and ATM c.7271T>G OR 11.0 (95% CI 1.42-85.7; p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G, c.1036C>T and c.538C>T (p ≤ 0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53-6.03; p=0.0006) for African men and CHEK2 c.1312G>T (OR 2.21 95% CI 1.06-4.63; p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants.
Conclusion: This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.
Original language | English |
---|---|
Pages (from-to) | 800-811 |
Number of pages | 12 |
Journal | Journal of Medical Genetics |
Volume | 53 |
Issue number | 12 |
Early online date | 5 Sept 2016 |
DOIs | |
Publication status | Published - Dec 2016 |
Research Groups and Themes
- Centre for Surgical Research