TY - JOUR
T1 - Parameter conditioning and prediction uncertainties of the LISFLOOD-WB distributed hydrological model
AU - Mo, Xingguo
AU - Pappenberger, Florian
AU - Beven, Keith
AU - Liu, Suxia
AU - De Roo, Ad
AU - Lin, Zhonghui
PY - 2006/2/1
Y1 - 2006/2/1
N2 - Distribined hydrological models are considered to be a promising tool for predicting the impacts of global change on the hydrological processes at the basin scale. However, distributed models typically require values of many parameters to be specified or calibrated, which exacerbates model prediction uncertainty. This study uses the generalized likelibood uncertainty estimation (GLUE) technique to analyse the parameter sensitivities of a distributed hydrological model, LISFLOOD-WB. Discharge time series and event volume data of the Luo River at upstream and downstream sites, Lingkou and Lushi, are used to analyse parameter uncertainty. Eight key parameters in the model are selected for conditioning and sampled using the Monte Carlo method on er assumed prior distributions. The results show that maximum efficiency of model Performance is lower and the number of behavioural parameter sets giving acceptable performance is fewer in the Lingkou sub-basin than in the Lushi sub-basin with the same criteria of acceptability. For both sub-basins the distribution shape parameter B in the fast runoff generation scheme is the most sensitive in predicting both discharge time series and event volume at the oudet. It is also shown that the value of parameter B at which the highest efficiency is derived is shifted from a value for Lushi to a low value for Lingkou consistent with past of model calibration that the larger the basin the larger the B value is. The channel Manning coefficient Nc shows some sensitivity in the prediction of discharge series, but less in the prediction of event volumes, The other key parameters show little sensitivity and good simulations are found across the full range of parameter values sampled. The uncertainty bounds of predicted discharges at the Lushi sub-basin are broad in the and narrow in the recession. The normalized difference between the upper and lower uncertainty bounds for both discharge and evapotranspiration are broad in summer and narrow in winter and that of recharge is the opposite.
AB - Distribined hydrological models are considered to be a promising tool for predicting the impacts of global change on the hydrological processes at the basin scale. However, distributed models typically require values of many parameters to be specified or calibrated, which exacerbates model prediction uncertainty. This study uses the generalized likelibood uncertainty estimation (GLUE) technique to analyse the parameter sensitivities of a distributed hydrological model, LISFLOOD-WB. Discharge time series and event volume data of the Luo River at upstream and downstream sites, Lingkou and Lushi, are used to analyse parameter uncertainty. Eight key parameters in the model are selected for conditioning and sampled using the Monte Carlo method on er assumed prior distributions. The results show that maximum efficiency of model Performance is lower and the number of behavioural parameter sets giving acceptable performance is fewer in the Lingkou sub-basin than in the Lushi sub-basin with the same criteria of acceptability. For both sub-basins the distribution shape parameter B in the fast runoff generation scheme is the most sensitive in predicting both discharge time series and event volume at the oudet. It is also shown that the value of parameter B at which the highest efficiency is derived is shifted from a value for Lushi to a low value for Lingkou consistent with past of model calibration that the larger the basin the larger the B value is. The channel Manning coefficient Nc shows some sensitivity in the prediction of discharge series, but less in the prediction of event volumes, The other key parameters show little sensitivity and good simulations are found across the full range of parameter values sampled. The uncertainty bounds of predicted discharges at the Lushi sub-basin are broad in the and narrow in the recession. The normalized difference between the upper and lower uncertainty bounds for both discharge and evapotranspiration are broad in summer and narrow in winter and that of recharge is the opposite.
KW - Distributed hydrological model
KW - GLUE
KW - Parameter calibration
KW - Uncertainty
UR - http://www.scopus.com/inward/record.url?scp=32544433764&partnerID=8YFLogxK
U2 - 10.1623/hysj.51.1.45
DO - 10.1623/hysj.51.1.45
M3 - Article (Academic Journal)
AN - SCOPUS:32544433764
VL - 51
SP - 45
EP - 65
JO - Hydrological Sciences Journal
JF - Hydrological Sciences Journal
SN - 0262-6667
IS - 1
ER -