Abstract
We present a method which uses Feynman-like diagrams to calculate the statistical quantities of embedded many-body random matrix problems. The method provides a promising alternative to existing techniques and offers many important simplifications. We use it here to find the fourth, sixth, and eighth moments of the level density of an m-body system with k fermions or bosons interacting through a random Hermitian potential (k≤m) in the limit where the number of possible single-particle states is taken to infinity. All share the same transition, starting immediately after 2k=m, from moments arising from a semicircular level density to Gaussian moments. The results also reveal a striking feature; the domain of the 2n-th moment is naturally divided into n subdomains specified by the points 2k=m,3k=m,...,nk=m.
Original language | English |
---|---|
Article number | 010102(R) |
Number of pages | 4 |
Journal | Physical Review E: Statistical, Nonlinear, and Soft Matter Physics |
Volume | 90 |
Issue number | 010102(R) |
Publication status | Published - 25 Jul 2014 |
Fingerprint
Dive into the research topics of 'Particle diagrams and embedded many-body random matrix theory'. Together they form a unique fingerprint.Profiles
-
Dr Sebastian Muller
- School of Mathematics - Senior Lecturer
- Applied Mathematics
- Mathematical Physics
Person: Academic , Member